
	

Philadelphia Classic 2012

Hosted	 by	 the	 Dining	 Philosophers	

Department	 of	 Computer	 and	 Information	 Science	
School	 of	 Engineering	 and	 Applied	 Science	

University	 of	 Pennsylvania	

February	 18,	 2012	

	

	

	

1. So much for college…
Apparently studying for the SATs is important. You didn’t, and you bombed them. Nervous
that you won’t be able to attend an excellent school like the University of Pennsylvania, you
quickly consult the Internets. As luck would have it, the importance of standardized tests
has diminished in recent years! You do plenty of activities, but you don’t know your GPA.
Petrified with the thought of not attending Penn, you rush to your report cards. Because
math is hard, you decide to write a program to calculate your GPA for you.

As a note, at your school, GPA is calculated on a 4.0 scale. An A+ or A is a 4.0, an A- is a
3.7, B+ is a 3.3, B is a 3.0, B- is a 2.7, C+ is a 2.3, C is a 2.0, C- is a 1.7, D+ is a 1.3, D is a
1.0, D- is an 0.7, and F is 0.0. Given all your grades, your task is to calculate your average
GPA.

Sample Input:
The input will be in the form of a string, with grades separated by spaces. You can assume
that all grades are “valid” - “A+”, “A”, … , “F”, and that each grade will be separated from the
next by a single space. You can also assume that there will be at least one grade in the
input.

(1): “A A A B+ D- C+ A B”
(2): “C”

Sample Output:
Return, as a double, the average GPA of all your grades.

(1): 3.1625
(2): 2.0

	

2. When it rains it pours…
Bad news: your GPA isn’t that great. This shouldn’t come as a shock; after all, you didn’t
study for your SATs, suggesting a pretty poor work ethic. Despite this recent slew of
setbacks, you’re armed with a great determination to fix your problem. Over dinner last
night, you remember your dad mentioning that crazy old Doc Brown had recently brought
his DeLorean in to your father’s Body Shop. It becomes clear what you must do. Grabbing
your father’s keys, you rush to the body shop. Eager to change the past, you jump into the
front seat, punch in 2010, and burn rubber.

No sooner have you hit 88 miles per hour than you realize why Doc Brown needed some
body work: The DeLorean is broken! It takes a couple of jumps to learn the pattern. Given a
current year N and a target year T, if N > 100, T > 100, and N > T, the years the dashboard
displays are actually N’ and T’. These are determined in the following manner: N’ is a prime
number less than N, and T’ is a prime number greater than T, such that (N’ + T’)/2 is also a
prime number. The pair (N’, T’) displayed is the pair which minimizes abs(N’ - N) + abs(T’ -
T).

That is, both numbers are fuzzed (N is fuzzed down, T is fuzzed up) to become prime
numbers, such that their sum is two times a prime number, while minimizing the overall
amount of “fuzzing”. You can assume that if you had to fuzz N and T, there is at least one
valid pair N’ and T’ that matches the constraints.

If you have any hope of successfully navigating to 2010 you’ll need to write a program that,
given a value of N and a value of T, output the displayed values N’ and T’.

Sample Input:
Your input will be two integers, N and T. You can assume that N and T are both positive
integers.

(1): 2000, 1000
(2): 150, 120

Sample Output:
Return an integer array with the values N’, and T’. If there are multiple pairs (N’, T’) that
satisfy the criteria, any pair will be accepted.

(1): [1973, 1013]
(2): [127, 127]

	

3. Fixing the Flux Capacitor!
You worked out the fuzzing pattern, but it took a while and you’re way off course, far into the
future. It seems like the smartest course of action from here is to repair the Flux Capacitor
in the DeLorean and head to 2010. Energized with a sense of pride for your forward
thinking, you walk into the nearest storefront. It quickly becomes obvious that you’re
hideously unprepared to handle the local language. Deflated, you begin to work your way
through the language. You see a dictionary conveniently lying on the ground, and pick it up.
Oddly enough, the order of letters has changed! The alphabet is no longer A to Z; instead, it
is V to $. Indeed, the ordering is different, and two symbols, ‘#’, and ‘$’, have been added to
the alphabet as well.1 The new alphabet is “VOFLTSUQXJGBCAHNMDEZRYKWIP#$”. To
help piece together modern English, you must first organize what you’re seeing. Given an
array of strings, you must sort them lexicographically using this new alphabet. You can
assume that all strings will be exactly six characters long.

Sample Input:
Your input will be an array of strings. Each string will have six characters, in the range of V -
> P or ‘#’ or ‘$’.

[“JUICE$”, “W$#RDS”, “EAGLES”, “EAGERS”, “W$$RDS”]

Sample Output:
Output the same array, with the words in the correct order as given by the new alphabet.

[“JUICE$”, “EAGLES”, “EAGERS”, “W$#RDS”, “W$$RDS”]

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
1	 This	 is	 not	 the	 first	 time	 this	 has	 happened.	 In	 the	 19th	 century,	 the	 alphabet	 was	 27	 letters,	
ending	 with	 ampersand.	

	

4. Back on task!
Armed with some rudimentary modern English, you enter the hardware store in search of
parts. You’re not sure which parts you need to buy, or which parts are liable to need spares
(after all, you’re way more Bill and Ted than Doc Brown). So, you decide to spend as much
money as you can and hope for the best.

You’re given an array of prices, and your goal is to spend the maximum amount of money
without exceeding 100 dollars. (You may purchase the same part more than once.)

Sample Input:
You will be given an array of double values. You can assume that all values will be
positive, and have at most two decimal points.

(1): [7.32, 43.19, 6.00, 12.50]
(2): [4.77, 81.42, 18.53]

Sample Output:
Output, as a double, the maximum value you can spend under $100.

(1): 100.00
(2): 99.95

	

5. Able to pay?

You arrive at the front of the store, parts in hand, and realize that you have no cash. You
pull out your credit card, but you’re not really sure if it will work in the future. The validation
rule for credit card numbers in this new world works like this:

• Double the value of every second digit beginning from the right. That is, the last digit
is unchanged; the second-to-last digit is doubled; the third-to-last digit is unchanged;
and so on.

• Add the digits of all the doubled values, to the digits that were not doubled from the
original number

• If this sum is divisible by 10, the credit card is valid.

Your task is to write a program which takes a credit card number (input as a String), and
returns whether it is valid or not.

Sample input:
You will be given a string with digit characters. You cannot make any assumptions on the
length of the String.

(1): 4012888888881881
(2): 4012888888881882

Sample output:
Your function returns a Boolean, indicating whether the given credit card number is valid.

(1): true
(2): false

	

	

6. Stand back! I’m going to try science!
It’s time to repair the Flux Capacitor, but one hurdle yet remains between you and your task:
Doc Brown included a security system on the casing of Flux Capacitor to avoid tampering!
Fortunately, the security system mirrors the rules of Minesweeper. Finally, your years of
slacking in High School will pay off!

As a reminder, the rules of Minesweeper are as follows: You start with a grid of blank
squares. Each square will either have a mine, or nothing, behind it. When you click on a
square, one of a few things may happen.

a. If there is a mine behind that square, you lose and the game is over.
b. If there is no mine behind that square, but at least one of the (up to 8)

adjacent squares (where adjacent means in the 4 cardinal directions, or either
of the 4 diagonals) contains a mine, that blank is “removed”, and behind it is
revealed the number of adjacent squares that do contain a mine.

c. If there is no mine behind that square, and none of the adjacent squares
contain a mine, a 0 is revealed in that square. In addition, since all adjacent
squares are “safe”, those squares are all revealed as well (in this case,
“revealing” a square is equivalent to clicking on it). Of course, if any of those
squares have no adjacent mines, they also recursively reveal all of their
adjacent squares. We have provided extensive sample input/output which
should clarify these rules.	

You will be given a minesweeper board, in the form of a 2-dimensional array of characters.
This board will indicate which squares have mines behind them. In addition, you will be
given a 2-dimensional array indicating which squares you click and the order in which you
click them. Your task is to display what the board looks like, to the player, after the specified
squares have been clicked. If you click a square that has a mine behind it, you immediately
lose, and no further moves are played out (even if the array has more moves remaining).

Sample Input:
The board will be a 2-dimensional array. You can assume the number of rows is equal to
the number of columns. Squares with mines will have the ‘*’ character, and squares without
mines will have the ‘ ‘ (space) character.
The moves will also be stored in a 2-dimensional array of integers. This is an array of height
h, where h is the number of moves performed, and width 2. Each move is stored as an
array with 2 elements. The first element represents the “y” coordinate of the square you
click, and the second represents the “x” coordinate of the square you click. These
coordinates are zero-indexed, meaning that in a 3 by 3 array, to click the middle element in
the top row, the move would be [0, 1]. You can assume that we will only specify a click on a
valid square that has not already been revealed.

As described above, you will be given two inputs. For each of the sample inputs below,
assume that the input “board” is the following 2-dimensional array:

	

[[‘ ‘, ‘*’, ‘ ‘, ‘ ‘, ‘*’, ‘*’],
 [‘*’, ‘ ‘, ‘ ‘, ‘*’, ‘*’, ‘ ‘],
 [‘*’, ‘ ‘, ‘*’, ‘ ‘, ‘ ‘, ‘ ‘],
 [‘*’, ‘*’, ‘*’, ‘ ‘, ‘ ‘, ‘ ‘],
 [‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘, ‘ ‘],
 [‘ ‘, ‘*’, ‘*’, ‘*‘, ‘ ‘, ‘*’]]

(1): [[0, 0], [0, 2]]
(2): [] (no moves)
(3): [[5, 1], [0, 0]]
(4): [[3, 5], [5, 0]]

Sample Output:
You should return a 2-dimensional array, representing what the board looks like to the user.
Squares that have not been revealed should have an ‘_’ underscore character. Squares that
have been revealed that do not have mines behind them should have a character
representing the number of adjacent mines. If a square with a mine behind it was clicked,
you should show a ‘*’ asterisk character.
(1):
[[‘2’, ‘_’, ‘2’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’]]

(2):
[[‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’]]

(3):
[[‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘*’, ‘_’, ‘_’, ‘_’, ‘_’]]

(4):
[[‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’],
 [‘_’, ‘_’, ‘_’, ‘4’, ‘2’, ‘1’],
 [‘_’, ‘_’, ‘_’, ‘2’, ‘0’, ‘0’],
 [‘_’, ‘_’, ‘_’, ‘3’, ‘2’, ‘1’],
 [‘1’, ‘_’, ‘_’, ‘_’, ‘_’, ‘_’]]

	

7. Gotta go back in time!
Is the Flux Capacitor repaired? Look, maybe you didn't fix every single little tiny bug, but
basically you fixed it. Sadly, your repair job has made your destination harder to specify.
Namely, you have to specify your destination with two pieces of information: 1) the number
of days backward or forward that you will be traveling, and 2) the month that you will be
landing in. But hey, you just fixed a completely incomprehensible piece of scientific genius
despite a serious lack of scientific knowhow, so you’re in pretty high spirits. All you have to
do is figure out a way to determine which month you would land in, given the number of
days forward or backward you are traveling.

For this problem, you only have to determine, given a number of days, which month you will
land in if you travel that many days in the future. Assume today is, indeed, today (February
18, 2012). Also, don’t forget leap years! All years divisible by 400 are leap years, all other
years divisible by 100 are not leap years, and all other years divisible by 4 are leap years.

Sample Input:
The input will be a positive integer, representing the number of days in the future you are
traveling. You can assume that the input will be less than the max value of integers (2^31 -
1).

(1): 11
(2): 12
(3): 1155

Sample Output:
Output the month that you arrive to the future in. The first letter of the month should be
capitalized.

(1): February
(2): March
(3): April

	

8. Getting the message across.
You’ve successfully arrived in 2010, and it’s time to convince your past self to study harder!
The obvious plan would be to confront your past self, face-to-face. You’re no palooka2,
however, and you know that a face-to-face meeting would cause chaos for the space-time
continuum!

To ensure the origin of your message is carefully hidden, you decide to encode it using
anagrams. Concerned that your past self will take years parsing the message, thus
rendering the message pointless, you decide to include an anagram grouper to help your
past self along.

Two words are anagrams if they contain the same letters, in the same frequencies. For
example, READ and DARE are anagrams, but RABBLE and BARREL are not anagrams.

Your anagram solver will take a string array, and return a list of string arrays, where each
new array is a subset of the original, containing a set of anagrams.

Sample input:
Your input will be an array of strings. You can assume that all strings are composed solely
of alphabetic characters.

[“dog”, “god”, “cat”, “act”, “fish”, “tac”]

Sample output:

Output the words such that all anagrams are in the same list, in a list of list of words. The
order of the lists, as well as the order of the words in each list, doesn’t matter. You simply
need to have the lists separated correctly.

[[“dog”, “god”], [“cat”, “act”, “tac”], [“fish”]]

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
2	 Because	 you’re	 a	 a	 time	 traveler,	 the	 fact	 that	 “palooka”	 is	 no	 longer	 modern	 slang	 by	 any	 stretch	 of	
the	 imagination	 is	 not	 relevant	 to	 you.	
	

	

9. Better encryption

After all of that work, you decide that anagrams aren’t the most secure way to decode a
message. You come up with a more improved method for decoding your messages. Your
new method is to use a substitution cipher – each letter gets substituted with another letter
in the alphabet (or possibly itself).

To aid the writing of such an encrypted message, you give yourself a way to figure out
which words an encrypted word might stand for. For example, if the encrypted word is
XJJXI, words that it could stand for include “PEEPS” and “TOOTH”, because they have the
same ‘pattern’ (with respect to repeated letters). You want to find all words with that pattern.

Sample input:
You will have two inputs – the first will be an array of words, representing all the words in
the “dictionary”, and the second will be a word that has been encrypted, and the second will
be the encrypted String. You can assume that all letters are capitalized.

[“AXE”, “TOOTH”, “BANANA”, “PEEPS”, “APPLE”], “XJJXI”

Sample output:
Output an array of words that the word could stand for. This array should be a subset of the
words in the dictionary. There may be no words in the dictionary that the word stands for, in
which case you should output an empty array. The words should be returned in the same
order as they appear in the dictionary.

[“TOOTH”, “PEEPS”]

	

10. Don’t bet your future.
You got the message out, but there’s no way to be certain your past self can decode it in
time, or that studying will pay off. You need another edge. Perhaps a basic arithmetic parser
can help you work through those tough SAT questions! Eager to waste no time, you get
right to work!

Your task is to write a program that takes in a string and produces the evaluation of that
string as an arithmetic expression.

Sample Input:
Your input is a string consisting of integers, parentheses, addition symbols, and
multiplication symbols representing a valid arithmetic expression.

(1): “(3+2)*5”
(2): “1+((4+7)*3)”
(3): “(12)”

Sample Output:
Output an integer that is the value of the given expression, using correct order of
operations.

(1): 25
(2): 34
(3): 12

Epilogue.

You changed the past and improved your grades! Now you’re sure to blow the minds of
every college admissions officer who looks at your application (even the ones from great
schools like Penn)! With renewed self-confidence and a step in your stride, you go to Doc
Brown’s house and thank him for letting you borrow his DeLorean.

	

