Contest Problems
Philadelphia Classic, Fall 2015
Hosted by the Dining Philosophers
University of Pennsylvania

®
PR
~< 1
®

dining philosophers

UNIVERSITY OF PENNSYLVANIA OMPUTER SCIENCE CLUB

Rules and Information

This document includes 14 problems. Novice teams do problems 1-9; standard teams
do problems 5-14.

Any team which submits a correct solution for any of problems 1-4 will be assumed to
be a novice team. If you are not a novice team, please skip problems 1-4.

Problems 1-4 are easier than problems 5-9, which are easier than problems 10-14.

These problems are correspondingly labeled “Novice”, “Intermediate”, and “Advanced.”
Order does not otherwise relate to difficulty, except that problem 14 is the hardest.

You may use the Internet only for submitting your solutions, reading Javadocs, and
referring to any documents we link you to. You may not use the Internet for things like
StackOverflow, Google, or outside communication.

As you may know, you can choose to solve any given problem in either Java or
Python. If you would like to solve a problem in Java, we have provided a stub file that
takes care of the parsing for you. If you would like to solve a problem in Python, you
must create a file for the answer and parse the input file yourself. It may be useful to
refer to the Java stubs for how this works. Python submissions should be named the
same thing as the Java stub, but with a .py extension instead of .java
(“EscapeVelocity.py” instead of “EscapeVelocity.java”, for example). If you use Python,
you may refer to the Python standard library docs.

Do not modify any of the given methods or method headers in our stub files! They are
all specified in the desired format. You may add class fields, helper methods, etc as you
like, but modifying given parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem
solved. A team’s number of incorrect submissions will be used only as a tiebreaker.

Some problems use Java’s “long” type; if you are unfamiliar with them, they’re like an
“int”, but with a (much) bigger upper bound, and you have to add “L” to the end of an
explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

1. Novice Problem — Calculating Escape Velocity

Scientists wish to send a spaceship to Planet Z and then return back to Earth. Scientists
have figured out the escape velocity needed for their spaceship to leave Earth, but they are
having trouble finding the escape velocity needed to leave Planet Z because they do not yet
know the mass and radius of Planet Z. The formula for the escape velocity is given by

where M is the mass of the planet in kilograms, R is the radius of the
planet in meters, and v is the escape velocity in meters per second,
assuming there is no atmospheric friction. Note that Planet Z is in a
separate universe, where G is equal to 1.

You will be given two numbers, the first number being the mass of Planet Z in kilograms,
and the second number being the radius of Planet Z in meters. Your job is to find the escape
velocity of Planet Z.

Input Format
The input file has each test case on a single line. Each line consists of two floating point
numbers that will fit inside a Java doubile.

Output Format
For each set of numbers inputted, output the escape velocity of the spaceship in meters
per second, floored to the nearest integer (e.g. cast to an integer).

Sample Input Sample Output

10.0 2.0 3

21.015.0 1

2. Novice Problem — Outer Space Car Chase

You've recently joined an outer space police force. For your first assignment you’ve been
stationed along the Milky speedway, usually a boring place for newbies. However, as you'’re
lounging around in your spacecar eating your donuts and drinking coffee, you suddenly get a
call over the radio saying that an illegal vehicle is coming down the spaceway. It's your job to
stop it! However, the only way you can tell which vehicle is the illegal one is by checking the
license plate numbers on every spacecar you fly by to make sure they are legal numbers. You
realize that doing this by hand will be extremely difficult, as you should never drive and derive.
So, you must quickly write a program to check if the license plate numbers you're seeing are
legal or not.

A legal license plate number will contain 10 digits and has the following property:

It can be calculated such that the first digit on the left on the license plate is multiplied by 10, the
second is multiplied by 9, continuing until the last digit is multiplied by 1. Then these products
will be summed and, as long as the summation is divisible by 11, it is a legal license plate
number.

You will be given a String of unknown length containing both numbers and dashes. This
String will represent a license plate number you have seen. Don’t forget, there are no limitations
surrounding the placement or quantity of dashes in a license plate number. However, all license
plate strings will contain exactly ten numbers. You will then return the either the correct last digit
or a -1 if the digit in place is correct already.

Input Format

The input consists of multiple test cases. Each test case will consist of a license plate
number string. These license plate numbers will have dashes between the numbers at different
locations in each license plate number. All inputted license plate numbers will have 10 digits,
separated by dashes in any position.

Example of a potential license plate number input: 37-9876-215-2

and formula to calculate check digit:

3(10) + 7(9) + 9(8) + 8(7) + 7(6) + 6(5) + 2(4) + 1(3) + 5(2) without the last digit

then the last digit will be calculated by doing this summation and calculating the final

number required to have the entire summation, including the last digit, be divisible by 11

Output Format

You should return an integer. If the license plate number is valid, print out -1, otherwise,
print out the correct digit. Note that due to a special intergalactic numbering convention, the digit
printed out may be “10”, if that is what the required last digit must be to make the checksum
divisible by 11.

Sample Input Sample Output Explanation

37-9876-215-2 5 The calculated last digit is not 2 to make the
license plate valid, it is 5. Thus return 5

4-212-65-31-84

The calculated digit last digit is 4 and thus this is
valid. Return -1

3. Novice Problem — Rocket Tests

NASA is testing an experimental rocket and needs your help to analyze some data about
its flight. You are given a list of the rocket’s y-positions over time, as the rocket flies up and
down. Inside the rocket’s journey, the most important part to analyze is the longest increasing
contiguous sequence of y-positions, so as to determine the longest period of time where the
rocket was ascending. Help them to determine how long this sequence is!

You will be given a String of unknown length containing numbers. Each string position
represents the y-position of the rocket at a time position. For example, given the string “345” we
know the rocket had y-position 3 at time 1, 4 at time 2, and 5 at time 3. You will then return the
length of the longest increasing sequence of y-positions in your String.

Input Format:

The input file will consist of multiple test cases. The input has each test case on a single
line. Each line contains a string of unknown length of numbers, though each number will be
guaranteed to be only a single digit.

Output Format:
For each test case, you must print the length of the longest increasing sequence of
numbers on its own line.

Sample Input Sample Output Explanation

1234276234567 6 The longest increasing
sequence in this case is
‘2345677, which has length 6.

9746111 2 The longest increasing
sequence is “46”, which has
length 2.

4. Novice Problem — Faulty Command System

The spaceship Andromeda has a faulty command system for navigating the universe.
The command system first takes in a list of integers and finds all the local minima and local
maxima. These local minima and local maxima are commands for the rocket. A local minimum
is an element that is less than the two elements adjacent to it, and a local maximum is an
element that is greater than the two elements adjacent to it. The first and last elements in the list
are neither local minima nor maxima.

For each local minimum in the list, the spaceship moves backward the amount that was
specified in the local minimum. For each local maximum in the list, the spaceship moves forward
the amount that was specified in the local maximum.

After the spaceship has moved according to the local minima and maxima, the local
minima and maxima are removed from the list. Then, the command system finds new local
minima and maxima in the modified list and accordingly moves the spaceship in the same
fashion. This process is repeated until the command system receives a list that contains no
local minima and maxima.

Your program will be given a list of integers. Your program will keep track of the position
of the spaceship relative to its original position after processing the commands.

Input format
The input file will consist of multiple test cases, each containing a string on its own line.
This string contains a list of integers separated by commas and spaces.

Output format
For each test case, output the position of the spaceship relative to its starting position
after the list has no more local minima and maxima.

Sample Input Sample Explanation
Output
1,3,2,5 1,1 6 Remove local mins and maxes of [1, 3, 2, 5, 1, 1] to get

[1,1,1].
(Local maxes) — (Local mins) =(3+5)—(2)=6

1,5,7,7,2,3,6 | -5 Remove local mins and maxes of [1, 5,7, 7, 2, 3, 6] to
get[1,5,7,7, 3, 6].

Remove local mins and maxes of [1, 5, 7, 7, 3, 6] to get
[1,5,7,7,6].

(Local maxes) — (Local mins) = (0)—-(2 +3)=-5

1,3,6 0 There are no local mins and maxes in [1, 3, 6].

5. Overlap — Rocket Calculations

You are the head mathematician of an intergalactic spaceship. You are flying along,
smooth sailing, when suddenly a black hole appears out of nowhere! The spaceship shakes and
quakes and the power flickers on and off. Your captain orders you to get the spaceship out of
the way of the black hole. However, to avoid the black hole, you need to do a lot of calculations.
Unfortunately, the ship’s main computing functions are down because of the power loss. You
only have backup power, which evaluates expressions in a peculiar manner. The pieces of the
computer are coming out of place, so you barely have any time to do the calculations to save
the ship. Your crew members are counting on you to be able to program the computer and save
all of your lives.

You must write a program for the computer to allow it to do the simple calculations you
need in order to get the ship out of the path of the black hole. In this program you will only be
passing in single digit numbers 0-9, as the backup power cannot handle double digit numbers.
All calculations must be handled in a postfix fashion' (if you don’t know what this, you are
allowed to read up on it in the provided link), or the entire computer will crash and your ship will
go tumbling into the black hole.

Input Format:

The input file will consist of multiple test cases containing a String of numbers and
operators (+, -, *, /). All numbers in these String will be single digits 0-9. You will not need to
handle multiple digit numbers. You are guaranteed that there will never be a division by zero.

Output Format:
Output the answer as a double, rounded to 1 decimal place. If you are using our Java
stubs, you can just return the solution as a double in our function.

Input Output
54+ 9.0
123*+4- 3.0

' https://en.wikipedia.org/wiki/Reverse_Polish_notation#Postfix_algorithm

6. Overlap — Confusing Collinear Constellation

Since the ancient Greeks people have looked up at the stars and seen patterns in the
randomness of their positions. When someone names these patterns it's called a constellation,
and people have come up with quite a few of them over the years. NASA has decided to create
a database of them but they need your help with a problem. Currently some constellations in
their database contain groups of three stars that lie on a single line. If those points are
supposed to be connected then one of the points isn’t needed and if they are not supposed to
be connected one of the points is confusing for a viewer since the eye is naturally drawn to
collinear pointgleaton needed] \NASA would like you to determine if any given constellation has three
collinear points so that it can be re-evaluated.

You will be given an array containing 2N integers representing N points in the format
“IX1,Y1,X2,Y2...]" and you should return a boolean that is true if 3 or more of the N points are
collinear and false otherwise. NOTE: You may be tempted to loop over all possible sets of 3
points and simply test all of them, this will not work. There are N*® such sets and we will give you
cases where N is so large this will time out. You'll need to come up with something better.

Input format:
The input has each test case on a single line. Each line has all the points listed in the
order “X1 Y1 X2 Y2....” where the variables are integers separated by spaces.

Output format:

The output is simple a boolean value corresponding to the answer and formatted
according to Java’s “System.out.printin(true);” and “System.out.printin(false);”. Note the use of
“printin” since the response to each test should be on a separate line

Input Limit:
Array of integer values of length 2N where 1 <= N <= 5000. All elements X of the array
are in the range -10000 <= X <= 10000

Sample Input Sample Output Explanation

11311333 false This is a square. No three
points are collinear

1131133344 true The points (1, 1), (3, 3) and
(4,4) are all on the same line

7. Overlap — Podracing

A long time ago, in a galaxy far, far away...

Anakin wanted to conduct an inter-planetary pod race in Galaxy Skyriver.

However, to maintain fairness in the tournament, Anakin decides to divide the planets
into two groups, Ashla and Bogan, such that each group has the same amount of fuel. The
podraces would then be contested between pods from Ashla and Bogan.

Unfortunately, Anakin is weak at mathematics and is unable to figure out if it is possible
to divide the galaxy into two groups of planets such that each group has the same amount of
fuel. Can you help him?

There are N planets in Galaxy Skyriver each with a different amount of pod fuel. The
planets are numbered from 0 to N-1. Planet 'i' has A[i] liters of pod-fuel. Each test case
comprises of an integer N that denotes the number of planets, and an array of integers that
denote the fuel in each planet. For every test case, you should return true or false based on
whether the planets can be divided up into two equal groups.

Input Format :

The first line of the input file contains an integer T that denotes the number of test cases.
The input file puts each test case on two lines. The first line of each test case comprises the
integer N, which denotes the number of planets. The second line of each test case comprises N
space separated integers i.e. A[0], A[1], A[2]....A[N], the fuel in liters, of planet numbered 'i".

Output Format :
The output is simply a boolean value corresponding to the answer and formatted
according to Java’s “System.out.printin(true);” and “System.out.printin(false);”. Note the use of

“printin” since the response to each test case should be on a separate line.

Input Limit:
1<=T<=1000
1<=N<=32

0 <= A[i] <= 1000000000

Sample Input Sample Output Explanation

1 true We can put planets numbered

5 0,2,3,4 in Ashla and planet 1 in

110117 Bogan. Both groups will have 10
units of fuel.

1 false There is no possible way to

5 optimally and fairly divide the

4981002 planets.

8. Overlap Problem — Asteroid mining

As it is troublesome to transport minerals and other precious raw materials from the
Earth out to other systems, scientists have begun to research mining these raw materials
directly from asteroids out in space. Each mine has been designed like a binary tree - in other
words, they consist of a number of chambers, starting with a main chamber at the top (the
“root”). Each chamber can either be a “leaf” (i.e. it does not go any deeper), go deeper to a left
subchamber, to a right subchamber, or both.

Due to a quirk in the mining technology, the scientists have determined that the optimal
design for a mine is if it is symmetric. Informally, this means that if we were draw out the mine
design and fold it into half, the two halves would match with each other. Help the scientists
determine if the mine designs they have are symmetric or not.

You will be given the number of chambers numChambers, as well as two int arrays
leftChamber[] and rightChamber[], representing the indices of the subchambers that branch
off to the left and right of each chamber. In other words, leftChamber[i] and rightChamberf[i]
will represent the left and right subchambers of the i-th chamber respectively. If there is no
subchamber in that direction, the number in that spot will be -1. You should return a boolean
that is true if the tree is symmetric and false otherwise.

Input format

The input file will consist of multiple test cases in order.

On the first line of each test case, there is one int numChambers, representing the
number of chambers in the mine. This is passed as an int numChambers in the Java stub.

The remainder of the input consists of one line for each chamber. On the (i+1)-th line,
there are two integers leftChamber|[i] and rightChamberf[i], representing the left and right
subchamber of the i-th chamber. If there is no subchamber in that direction, the number in that
spot will be -1. This is passed as two int arrays leftChamber[] and rightChamber[] in the Java
stub.

Output format
For each test case, output a single line containing either Y if the mine is symmetric or N
if the mine is not symmetric.

Input Limits
There will be at most 20 test cases.
1 <= numChambers <= 100,000

Sample Input

Sample Output

Explanation

7 Y This represents the following
12 tree, which is symmetric:
34 0
56 / \
-1 -1 1 2
-1 -1 / N\ /N
-1 3 4 5 o
-1 -1
5 N This represents the following
12 tree, which is not symmetric:
3-1 0
4 -1 /N
-1 -1 1 2
-1 -1 / /
3 4
Intuitively, if we fold it in half,
the two halves don’t match
each other.
5 Y This represents the following
12 tree, which is symmetric:
3-1 0
14 / \
-1 -1 1 2
-1 -1 / \

9. Overlap Problem — Space Resources

It's year 3000 and the reckless humans of Earth have exhausted the planet’s supply of
precious metals. Unless they get their hands on these resources, humans will lose the ability to
manufacture all electronics. Luckily, starship captain Zapp Brannigan happens to have just
completed a research expedition on the resource-rich planet Zorb103492341. Zapp had the
foresight to collect a massive list of all of the resources available on Zorb103492341. The
humans on Earth fax Zapp a list of the precious resources they need on Earth.

Zapp needs to program his humanoid robot to find the duplicate resources in these two
lists so Zapp can choose which resources to bring back to Earth. It turns out that Zapp is a
horrible programmer and begs you to help.

Your program will be given two sorted lists of strings. The first list (named “requested”)
contains the names of all the resources needed on Earth. The second list (named “available”)
contains the name of resources available on Zorb103492341. You should return a list containing
the names of all the resources which are in both lists. Your returned list should be sorted.

Note: the available list is significantly larger than the requested list. Thus,
checking the available list one by one for each resource is likely not to run fast enough.
All resource names are lowercase.

Input Format

Read the input file until it ends. The file contains multiple test cases. Each test case
begins with two integers a and b. Following are a lines of strings belonging to the “requested”
list and b lines of strings belonging to the “available” list. After reading all a and b lines, there
may be additional test cases.

Output Format
For each test case print the duplicates list as a series of strings separated by spaces.
For example, print the list [beryllium, gallium, rhodium] as

beryllium gallium rhodium

Input Limits
There will be at most 10 test cases.
1 <= |requested| <= 5000
1 <= |available| <= 500000

Sample Input

Sample Output

Explanation

requested: [rhodium]

available: [beryllium,
rhodium]

rhodium

Only rhodium was requested.

requested: [beryllium,
gallium, rhodium]

available: [beryllium, bismuth,
germanium, gold, indium,
mercury, osmium, palladium,
platinum, rhenium, rhodium,
ruthenium, silver, tellurium]

beryllium rhodium

Only beryllium, gallium, and
rhodium was requested.
Also, gallium was requested
but was not available.

10. Standard Problem — Star Temperatures

You are slowly making a catalogue of all the stars in many galaxies, far far away. Your
friend Lewis wants to run some statistical analyses on the temperatures of the stars, so every
time you catalogue a new star, he pesters you for the median temperature of all the stars you
have seen so far. If you have seen an odd number of stars, there will only be one median. If you
have seen an even number of stars, Lewis wants to know the smaller of the two middle
numbers (instead of the mean of the two). Help Lewis get the information he needs!

Your program will be given the number of stars in the galaxy, numStars, as well as an
array temperatures|] containing the temperature of each star. You will have to return an array
containing the medians of each prefix of the sequence, just as Lewis requires.

Input format

The input file will consist of multiple test cases in order.

On the first line of each test case, there is one int numStars, representing the number of
stars in the galaxy.

On the second line of each test case, there are numStars numbers, each representing
the temperature of a single star. These are given in the order that you need to process them,
and is passed as an int array temperaturesf] in your input.

Output format

For each test case, output numStars lines of output. The n-th line of output should
contain the median(s) of the first n stars of that test case. For even numbered lines, output the
smaller of the two numbers first, followed by the larger.

Input Limits
There will be at most 15 test cases.
1 <= numStars <= 50,000

Sample Input

Sample Output

Explanation

5 1 The median of [1] is 1.
12345 1 The medians of [1, 2] are 1
2 and 2, so we print 1.
2 The median of [1, 2, 3] is 2.
3 The medians of [1, 2, 3, 4]
are 2 and 3, so we print 2.
The median of [1, 2, 3, 4, 5]
is 3.
6 3 The median of [3] is 3.
351264 3 The medians of [3, 5] are 3
3 and 5.
2 The median of [1, 3, 5] is 3.
3 The medians of [1, 2, 3, 5]
3 are 2 and 3.
The median of [1, 2, 3, 5, 6]
is 3.
The medians of [1, 2, 3, 4, 5,
6] are 3 and 4.
10

45678910123

OO0 N OO b b

11. Standard Problem - Safe Spacewalks

While modern spaceships are technologically impressive, the hardware which comprises
them is quite error prone (those darned hardware engineers!). Occasionally, space travelers like
yourself need to complete a spacewalk to repair components on the outside of the ship. As you
already know, jetpacks are critical to maneuvering in zero gravity, such as during spacewalks.
Unfortunately, you bought the P1000, a bargain jetpack (read: cheap and crappy) with an
annoying property. Mainly, the jetpack can only keep you stabilized if you and your tools
collectively weigh exactly 300 kilograms. We don’t quite understand why mass should matter in
a zero-gravity environment, but nevertheless it has been shown that P1000 users who do not
satisfy this specification will surely drift off into space, probably forever.

Luckily for you, you have a lot of different space tools lying around which you can take
with you on different space walks. Let’s call a quadruple of tools valid if the mass of the tools
combined with your mass is exactly 300 kilograms. A valid quadruple of tools will ensure that
the jetpack is stabilized. Since you know your own mass, you know the value of “sum”, which is
the total mass of a valid quadruple of tools. You are curious how many quadruples of tools are
valid (in other words how many quadruples add up to “sum”). Since you are a star programmer,
you decide to write a program to answer your question.

You program will be given an integer “sum” which is the total mass of a valid quadruple
of tools. Your program will also be given a list of distinct positive integers called “tools”. You
should return the number of unique quadruples of distinct integers which add up to sum.

Note:
e (1,2,3,4)and (4, 3, 2, 1) are not unique and should only be counted once.
e (1,2,3,3)is not a valid quadruple because it does not consist of four distinct integers.

Input Format

Read the input file until it ends. The file contains multiple test cases. Each test case
begins with an integer sum corresponding to the total mass of a valid quadruple of tools. On the
next line is an integer k. Following are k lines of integers belonging to the “tools” list. After
reading all k lines, there may be additional test cases.

Output Format
For each test case print the result on its own line.

Input Limits
There will be at most 20 test cases.
1 <= sum <= 100000
1 <= |tools| <= 750

Sample Input

Sample Output

Explanation

sum: 10
tools: [4, 2, 1, 3, 5]

1

There is 1 quadruple which
adds up to 10: (1, 2, 3, 4)

sum: 20
tools: [14, 10, 2, 1, 3, 4, 5]

There are 3 quadruples
which add up to 20:
(1,2,3,14),(1,4, 5, 10), and
(2,3,5,10)

12. Standard Problem - Titillating Time Travel

NASA has discovered a way of gravity slingshotting past a black hole so effectively that
the laws of causality are violated and the vessel arrives at its destination before it arrives. This
process requires moving past the black hole so they can’t use it to simply travel infinitely far
back in time. At least not without some help from you. NASA would like to figure out if they can
plan a route through space waypoints that allows the traveler to end up back in their original
location at a time earlier than they started. Specifically they would like to know if this can be
accomplished in a space sector with only one black hole. Space travel can only happen
between pre-defined way points because of the Space Travel Problem Simplification (STPS) act
of 3015 so they will give you a list of all the nodes and how long it takes to travel between them
and you need to determine if a time loop exists using those points. You should note that due to
the complexities of space travel not all way points are connected to each other. You should also
note that because of even more complexities of space travel (space traffic) the triangle
inequality does not hold (i.e if you can travel directly between two nodes that still might not be
the shortest path between those points). Finally the time from waypoint a to waypoint b might
not be the time from waypoint b to waypoint a since the time travels are affected by the
particular space routes which are determined directionally.

You will be given as input a two dimensional array of integers called ‘times’ where
‘timesli][j]’ is the travel time from waypoint i’ to j’ or 0 if you can’t travel between those nodes.
Exactly one element of ‘times’ will be less than 0.

Input Format

The input consists of a single line for each test case. The line consists of a list of integers
separated by spaces representing the elements of the times array listed in row-major format
(first the first row is listed, then the second and so on).

Output Format

The output is simple a boolean value corresponding to the answer and formatted
according to Java’s “System.out.printin(true);” and “System.out.printin(false);”. Note the use of
“printin” since the response to each test should be on a separate line.

Input Limit:
If the number of elements of ‘times’ is N*2 then 2 <= N <= 10000

Sample Input

Sample Output

Explanation

015
10-2
100

false

Note: in the input file, this
input would be on one line,
this has been expanded for
reading convenience.

The best a ship could do is
travel 0->1->2->0 which
leads to a total travel time of
0 which isn’t traveling back in
time

w N -~ O
g O O -~

(lJ'IN
O O -~ b

o O

true

You could travel from
1->2->0->1 which results in a
total travel time of -3

13. Standard Problem - First Contact?

Your sensors suddenly pick up a mysterious signal from a distant galaxy! Excitedly, you
begin decoding the signal and it seems to be... some kind of math problem?

The signal is asking for a certain property of Pascal’s triangle. For those of you who are
unfamiliar with Pascal’s triangle, it is an (infinite) triangle of integers where each number is
constructed by summing the two numbers above it. For example, the first 5 rows of the triangle
are as follows:

1
11
1 21
1 331
140641

Note that each number is the sum of the two numbers above it (e.g. the 6 in the bottom
row is the sum of the two 3s above it, and each 4 in the bottom row is the sum of the 3 and 1
above it).

We wish to find out the following: given some prime P, how many integers in the first N
rows of Pascal’s triangle are divisible by P? Help figure out this problem and decipher the
mysteries of the universe!

Input format

The input file will consist of multiple test cases in order.

Each test case will consist of three longs numRows, divisor, and modulus. numRows
will represent the number of rows of Pascal’s triangle you need to consider. divisor will be the
number you need to check for divisibility by. modulus will be the number you need to mod the
answer by. It is furthermore guaranteed that divisor will be a prime number.

Output format

For each test case, output a single long, representing how many numbers there are in
the first numRows of Pascal’s triangle that are divisible by divisor. This number may be
extremely large, so you will have to output the answer mod modulus.

Input Limits
There will be at most 30 test cases.
1 <= numRows <= 1,000,000,000
3 <=divisor <= 1,000,000
1 <= modulus <= 1,000,000,000

Sample Input

Sample Output

Explanation

53100 3 There are 3 integers in the
first 5 rows of Pascal’s
triangle divisible by 3.

532 1

1000000 7 1000007 675154

14. Standard Problem — Commander’s Conundrum

Having determined that the challenging math problem likely came from an alien race,
you, as the commander of an intergalactic spaceship, face a difficult decision. With supplies
running low, you must decide whether to pursue the strange symbol from the distant galaxy or
return back to the Milky Way.

Being a democratic commander, you decide that you will go with the majority decision.
However, your ship has a rather odd organizational structure. You have 3 subordinates, one,
two, and three, and they are the only three people whose opinion you can ask. However, your
subordinates decide their view based upon a majority of their subordinates, and each of your
subordinates can only ask their three subordinates. In fact, everyone’s opinion in this crew is
driven by the majority of their subordinates; the only people who hold an individual opinion are
the lowest members of the crew (i.e. those with no subordinates)!

However, there is a twist: If every member of your crew is asked their opinion, those with
no subordinates will realize they are the only one’s with an opinion, and they will rise up and
mutiny the ship. Thus, your challenge is this: you must decide what the majority opinion is on
the ship, but you cannot ask every member.

This is a risky proposition, so you may not succeed, but your crew is large, So you can
be guaranteed to have a strong chance of succeeding. Note, however, you must be able to
have a strong chance of succeeding on any input.

We will give you a special class called Astronaut, which implements the organizational
structure described above. In other words, the class consists of an object with three
subordinates of the same type, labeled one, two, and three, along with boolean values for
whether the Astronaut has no subordinates, what their vote is if they have no subordinates, and
whether their vote has been asked.

We have already written the method which parses text input and generates the
Astronaut object representing you, the commander. You will return a boolean indicating the
decision made by the commander.

Regardless of your language of choice, you must use the Astronaut class and cannot
modify it! Our grading scripts depend on it! Please ask if you have any questions on it.

Input Format

For those using Python, you must parse our text input, which consists of a single line
representing the true false opinions of the lowest members of the crew. Let us know if you need
any assistance with this.

Output Format

You will output a single boolean value, true, meaning you will pursue the distant galaxy,
or false, meaning you will return to the Milky Way. We will also print an additional line, the
“allAccessed” method, which will help us check whether you asked every member of the crew.
We will also then print 5 dashes, which will help you delimit test cases to check your solution.

Those using Python will need to add these latter two outputs to their main method. Finally,
please print everything in Java format.

Input Limits
You can be guaranteed that the number of members of your crew is a power of three,

guaranteeing that each crewmember either has three subordinates or none at all. You can also
be guaranteed that your crew will be large, which should help you succeed on any input.

Sample Input Sample Explanation
Output
true The commander has three

subordinates, none of whom
have any subordinates, so
the majority is simply the
majority of those three, which
is true.

In addition, there must be
some chance your solution
only asked two of these three
astronauts their opinion

