Contest Problems
Philadelphia Classic, Spring 2015
Hosted by the Dining Philosophers
University of Pennsylvania

®
PR
~< 1
®

dining philosophers

UNIVERSITY OF PENNSYLVANIA OMPUTER SCIENCE CLUB

Rules and Information

This document includes 13 problems. Novice teams do problems 1-9; standard teams
do problems 5-13.

Any team which submits a correct solution for any of problems 1-4 will be assumed to
be a novice team. If you are not a novice team, please skip problems 1-4.

Problems 1-4 are easier than problems 5-9, which are easier than problems 10-13.

These problems are correspondingly labeled “Novice”, “Intermediate”, and “Advanced.”
Order does not otherwise relate to difficulty, except that problem 13 is the hardest.

You may use the Internet only for submitting your solutions, reading Javadocs, and
referring to any documents we link you to. You may not use the Internet for things like
StackOverflow, Google, or outside communication.

As you may know, you can choose to solve any given problem in either Java or
Python. If you would like to solve a problem in Java, we have provided a stub file that
takes care of the parsing for you. If you would like to solve a problem in Python, you
must create a file for the answer and parse the input file yourself. It may be useful to
refer to the Java stubs for how this works. Python submissions should be named the
same thing as the Java stub, but with a .py extension instead of .java
(“ChooseYourStarter.py” instead of “ChooseYourStarter.java”, for example). If you use
Python, you may refer to the Python standard library docs.

Do not modify any of the given methods or method headers in our stub files! They are
all specified in the desired format. You may add class fields, helper methods, etc as you
like, but modifying given parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem
solved. A team’s number of incorrect submissions will be used only as a tiebreaker.

Some problems use Java’s “long” type; if you are unfamiliar with them, they’re like an
“int”, but with a (much) bigger upper bound, and you have to add “L” to the end of an
explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

1. Novice Problem - Choose Your Starter Pokemon

The first thing any new Pokemon trainer must do is choose their starting pokemon.
This is a huge deal, and countless years have been spent debating the best starter, dating all
the way back to Squirtle vs. Charmander vs. Bulbasaur.

Here, you are given information about the types of the three pokemon of your first
opponent, and you must choose your starter Pokemon carefully based on the battles ahead of
you. Each battle will include three foes, each with a particular type. You want to pick the

Pokemon that will fare the best, as indicated by the table below.

Foe Type Squirtle Charmander Bulbasaur
Water 0 -1 +1

Fire +1 0 -1

Grass -1 +1 0

Electric -1 0 0

Rock +1 -1 +1

Flying 0 0 -1

The score of each starter Pokemon is the sum of scores of all types it faces. For
instance, a Charmander facing a water type Pokemon would reduce its score by 1. Thus, the
Pokemon that would fare the best overall is the one with the best sum. If there is a tie in
score, prefer to choose Squirtle, followed by Charmander, followed by Bulbasaur. Figure out
which Pokemon will be the best!

Input Format

The input contains multiple test cases, each on one line. Each line of the input
represents one battle, and it contains three strings, representing the types of the Pokemon
faced in that battle. All these battles are passed as a String battleTypes in the Java stub, with
each string containing 3 space-separated types.

Output Format
For each battle, output a string “squirtle”, “charmander”, or “bulbasaur” (in lower case),
corresponding to the best starter pokemon for that battle.

Input Limits
There will be at most 216 test cases in the input.

Sample Input: Sample Output:

fire fire fire squirtle
water electric rock bulbasaur
electric electric flying charmander

2. Novice Problem - Gotta Rank ‘em All

For the uninitiated, every Pokemon has a distinct number associated with it. As a
computer science student this mapping intrigues you in a number of ways. In this problem we
are concerned with the numbers of the Pokemon in your deck. When your CS teacher told
you about the rank of an item in an array, you immediately saw that there was a problem ripe
for solving. The rank of an element of an array is the number of elements less than it in the
array. So the rank of the least element of an array is zero and the rank of the greatest element
is the length of the array minus one.

What you want to know is this: given a deck of distinct Pokemon cards, are there any
cards where the number of the Pokemon is equal to the rank of that card in your deck?
However you quickly realize that because Pokemon numbering starts at one this is actually
impossible. Rather than accept this boring answer you act like a computer science teacher
and make the problem harder. You accomplish this by saying that any card in your deck is
greater than any card in the rest of your Pokemon card collection (effectively offsetting the
rank by the size of the rest of your collection).

We will provide you with an array of integers representing the numbers of the
Pokemon in your deck and an integer representing the number of cards in the rest of your
collection. The cards in the rest of your collection (which you do not have access to) always
come before the array of cards you are given. You can assume that the Pokemon are
distinct. What you should return is a boolean that is true if there is a Pokemon whose number
is its rank, and false if there is not.

Input Format

The input consists of multiple test cases. Each test takes up one line and consists of a
series of numbers separated by spaces.

The first number is numPokemon, the number of Pokemon cards you currently have.
The next numPokemon integers are the Pokemon cards in your deck (passed as an int[]
pokemon in the Java stub file) and the last integer is remainderSize, the number of cards in

the rest of your collection.

Output Format

The output consists of a single line with either true or false depending on the answer.
The format of true and false is determined by how Java translates booleans into strings.

Sample Input:

Sample Output:

Explanation

5134511223

true

numPokemon =5

pokemon =[134, 5, 1, 12, 2]
remainderSize = 3

There are 5 cards listed here: [134, 5, 1, 12,
2], and 3 more in the collection.

The cards in the collection are ranked 0 to 2
(since there are 3 of them), card 1 is ranked 3,
card 2 is ranked 4, card 5 is ranked 5, card 12
is ranked 6, and card 134 is ranked 7. Thus,
card 5 fulfills the desired condition.

51345112210

false

There are 5 cards listed here: [134, 5, 1, 12,
2], and 10 more in the collection.

The cards in the collection are ranked 0 to 9,
card 1 is ranked 10, card 2 is ranked 11, card
5is ranked 12, card 12 is ranked 13, and card
134 is ranked 14, so no card has number
same as its rank.

7371100245100

false

There are 7 cards listed here: [3, 7, 1, 100, 24,
5, 10], and no other cards in the collection.
No card has number same as its rank.

3. Novice Problem - Pokeblocks

Pokeblocks are candy given to Pokemon to increase their competitive conditions for
beauty pageants. They are made from berries, and the specific combination of berries make
them different colors. Given the recipes for different colored blocks and an array of different
types of berries and their amounts, you need to find the most Pokeblocks that those berries
can produce.

We will provide an array that represents the berries. The specific berry for each array
index, as well as the recipes for each Pokeblock, is listed below. Not every berry may be
used. From this data, output the amount of each color of Pokeblock that could be produced.
(You should consider each color block independently: that is, you would return the number of
red blocks you could make if you didn’t make any other kind of block, the number of green
blocks you could make if you didn’t make any other kind of block, etc.)

Berries in order:
[Cheri,Chesto,Sitrus,Rawst,Figy,Wiki,Leppal]
Recipes:

Cheri+Figy+Leppa=Red Block
Sitrus+Rawst=Green Block
Wiki+Chesto=Blue Block

Input Format

The input consists of multiple test cases.

Each test case consists of a line of 7 integers, representing the array of berry amounts
with the specific order listed below. This is passed as an array int[] a in the Java stub file.
Output Format

For each test case, return a String of space-separated numbers that represent the
number of red, green, and blue blocks that can be made.

Sample Input: Sample Output: Explanation:

3536472 235 For example, there are 3 Cheri
berries, 4 Figy berries, and 2
Leppa berries, so 2 red blocks
can be created.

6834744 434 For example, there are 4 Wiki
berries and 4 Chesto berries, so
4 blue blocks can be created.

48485453 345 For example, there are 4 Sitrus
berries and 85 Rawst berries, so
4 green blocks can be created.

4. Novice Problem - Pokemon T-Shirts

Pokemon want to dress stylishly. However, since no Pokemon has worn clothing
before, they need help picking the right T-Shirt. Luckily, we have come up with a clear formula
for calculating the size for a Pokemon. We need your help implementing a program which tells
a Pokemon which T-Shirt size will fit it best.

T-Shirt size is a function of height as follows:
0 < h < 5ft: Small

5 < h < 10ft: Medium

10 < h < 15ft: Large

15 < h < 20ft: XL

20 < h < 30ft: XXL

>30 ft: No shirt fits

T-Shirt size is a function of weight as follows:
0 <w <20 Ibs: Small

20 <w =100 Ibs: Medium

100 < w = 200 Ibs: Large

200 <w =400 Ibs: XL

400 <w =< 1000 Ibs: XXL

>1000 Ibs: No shirt fits

For a given Pokemon, if the two functions give two different sizes, return the larger
size. For example, if a Pokemon weighs 10 pounds but is 7 feet tall, it gets a Medium shirt.

We will provide you with two doubles height and weight. You should return one of the
following Strings.
S for Small
M for Medium
L for Large
XL for Extra Large
XXL for Extra Extra Large
NONE for No shirt fits

Input Format

The input file consists of multiple test cases.

Each test case consists of one line of two doubles, height and weight, representing
the height in feet and weight in pounds of each Pokemon.

Output Format
For each test case (each line in the input file) print one of the appropriate size Strings
above on its own line.

Sample Input

Sample Output

Explanation

7.010.0

M

The Pokemon is 7.0 feet tall
and weighs 10.0 pounds.
The weight function says the
Pokemon needs a small, but
the height function says that
the Pokemon needs a
medium. Thus, we go with
the larger size: medium.

35.0 700.0

NONE

The Pokemon is 35.0 feet
tall and weighs 700.0
pounds.

The weight function says
that the Pokemon needs a
XXL, but the height function
says that the Pokemon will
not fit in a shirt. Thus, we go
with the larger size, so the
Pokemon doesn’t get a
shirt.

5. Intermediate Problem - Catching Pokemon

You are a Pokemon trainer on a quest to catch ‘em alll There are numPokemon
Pokemon which you want to catch, but due to budget constraints, you only have
numPokemon Pokeballs, so you will have to use one Pokeball on each Pokemon. You also
have a table of probabilities catchProbability, where catchProbability([i][j] is the chance of
Pokeball i catching Pokemon j. What is the maximum probability that you manage to catch all
the Pokemon successfully?

Input format

The input file will consist of multiple test cases in order.

On the first line of each test case, there is one int numPokemon, representing the
number of Pokemon to catch (as well as the number of Pokeballs available). This is passed
as an int numPokemon in the Java stub.

The remainder of the input represents a 2D array catchProbability. On each of the
subsequent numPokemon lines of input, there are numPokemon doubles describing a
Pokeball, with the j-th value on the i-th line representing catchProbability(i][j], the chance to
catch the j-th Pokemon with the i-th Pokeball. This is passed as a 2D array double[][]
catchProbability in the Java stub.

Output format
For each test case, output one single double value, to 3 decimal points, representing
the maximum probability to successfully catch all the Pokemon.

Input Limits
There will be at most 10 test cases.
1 <= numPokemon <= 10

Sample Input Sample Output Explanation

2 0.490 Using the first Pokeball on
0.70.5 the first Pokemon, and the
0.50.7 second Pokeball on the

second Pokemon, the
chance to catch each
Pokemon is 0.7, so the
overall chance is 0.49

3 0.168 Use the first Pokeball on the
0.80.90.1 first Pokemon, the second
0.30.30.3 on the third, and the third on

0.50.70.5 the second

6. Intermediate Problem - Pokemon Evolution

Pokemon have a rich and fascinating evolutionary history.' Several professors at Penn
are conducting research on the evolution of Pokemon, but they need to know how one given
Pokemon is related to another. More precisely, they want to know the lowest common
ancestor by which they are related. For example, are they both water pokemon? Are they
both origin Pokemon? Are they only related via the ancient soup (the organic mix which
predates all Pokemon)? This information is critical to learning about and understanding
pokemon.

We define the BinaryTreeNode class at the bottom of Evolution.java. Note that a
BinaryTreeNode is a binary tree in which each Node has exactly 0, 1, or 2 children. Each
BinaryTreeNode also has a String field ‘name’ which can either represent a Pokemon itself or
some other information about Pokemon. For example, a BinaryTreeNode object’s ‘name’ field
can be “Pikachu” or “WaterType.”

We will provide you with a BinaryTreeNode named root which is the root of the
evolutionary tree. We will also provide you with two Strings a and b. For each String, there is
exactly one BinaryTreeNode in the tree with a name field corresponding to that string. You
should return the lowest common ancestor? of the BinaryTreeNodes corresponding to the
given strings.

Input Format
Read the input file until it ends. The file begins with a test case. Every time you
encounter a line with “*”, the previous test case has ended and the next test case will begin on
the next line. Each test case begins with two strings a and b. For each String, there is exactly
one BinaryTreeNode in the tree with a name field corresponding to that string. The lines
following this firt line until the “*” line give you information on how to construct the BinaryTree
for this test case. Each line represents a single BinaryTreeNode. On each line, we give you
four variables separated by spaces.
e idis an integer and it represents the ID of that line’s BinaryTreeNode. id is always
between 0 and 100 (including 100).
name is a string and it is the name field of that line’s BinaryTreeNode.
left is an integer and it represents the ID of the BinaryTreeNode’s left child. If left is
negative, the BinaryTreeNode does not have a left child.
e rightis an integer and it represents the ID of the BinaryTreeNode’s right child. If right
is negative, the BinaryTreeNode does not have a right child.

For example, one of these lines might look like:

' http://i.imgur.com/ZfT4UWw.jpg

2 hitp://en.wikipedia.org/wiki/Lowest_common_ancestor

“In graph theory and computer science, the lowest common ancestor (LCA) of two nodes v and w in a tree
or directed acyclic graph (DAG) is the lowest (i.e. deepest) node that has both v and w as descendants,
where we define each node to be a descendant of itself (so if v has a direct connection from w, w is the
lowest common ancestor).”

http://i.imgur.com/ZfT4UWw.jpg
http://en.wikipedia.org/wiki/Lowest_common_ancestor

0 Pikachu 15

Output Format

For each test case print the name of the lowest common answer BinaryTreeNode on

its own line.

Sample Input

Sample Output

Explanation

6 Blastoise -1 -1

Raichu Blastoise TheAncientSoup Root:
0 TheAncientSoup 1 4 TheAncientSoup
1 Pichu 2 -1 |
2 Pikachu 3 -1 [\
3 Raichu -1 -1 /\
4 Squirtle -1 5 Pichu Squirtle
5 Wartortle -1 6 / \
6 Blastoise -1 -1 | |
I I
Pikachu Wartortle
/ \
| |
I I
Raichu Blastoise
a: Raichu
b: Blastoise
The first node that both
Raichu and Blastoise are
descendents of is
TheAncientSoup.
Raichu Pichu Pichu Root:
0 TheAncientSoup 1 4 TheAncientSoup
1 Pichu 2 -1 |
2 Pikachu 3 -1 [\
3 Raichu -1 -1 [\
4 Squirtle -1 5 Pichu Squirtle
5 Wartortle -1 6 / \

I I
Pikachu Wartortle

/ \

Raichu Blastoise

a: Raichu
b: Pichu

The first node that both
Raichu and Pichu are
descendents of is Pichu.
While they are also both
descendants of
TheAncientSoup, Pichu is
the “lower” ancestor.

7. Intermediate Problem - Rocket Boxes

Team Rocket is trying to arrange all the boxes in their hideout. They are trying stack
the boxes in triangle formation. The top row of boxes, defined as row 1, has 1 box; the row
directly beneath it, row 2, has 2 boxes, etc. such that the nth row has n boxes. Each box sits
upon exactly two other boxes. Under orders from their leader, they want to stash items inside
the boxes in a specific fashion: The bottom row (also the kth row), has some number k boxes.
Some of these boxes contain one item, some contain two, and some are empty. They
continue storing items in the boxes in the rows above by making sure that each box contains
exactly as many items as the sum of the number of items in the two boxes it sits upon.
Additionally, the single box at the very top must contain an even number of items. How many
ways can Team Rocket stash items inside the bottom row of boxes to ensure that all of their
leader’s requirements are fulfilled?

Input format:

The input consists of multiple test cases.

Each test cases consists of a single line. This line contains a single integer size, the
number of boxes on the bottom row.

Output format:

For each test case, output a single integer, equal to the number of ways to fill in the
bottom row’s boxes with 0, 1 or 2 items each such that the top box has an even number of
items.

Input limit:
1 <= size <= 20

Sample Input Sample Output Explanation

2 5 There are 5 possible ways to
fill out the bottom row:
00, 02, 20, 22, 11

3 15 There are 14 possible ways
to fill out the bottom row:
000, 010, 101, 111,

002, 020, 200, 022,

202, 220, 222, 012,

210, 212, 121

4 41 0000, 0002, 0020, 0200,
2000, 0022, 0202, 0220,
2002, 2020, 2200, 0222,

2022, 2202, 2220, 2222,
0011, 0211, 2011, 2211,
0101, 0121, 2101, 2121,
0110, 0112, 2110, 2112,
1001, 1021, 1201, 1221,
1010, 1012, 1210, 1212,
1100, 1102, 1120, 1122,
1111

8. Intermediate Problem - Pikachu goes to Pewter City

Your beloved Pikachu is setting out on a journey from Pallet Town, which is in the
extreme Southwest of a section of the world map, to Pewter City, which is in the extreme
Northeast of the same section of the world map. We consider this section of the world map to
be a grid of squares containing either a town or grass. Pikachu is in a hurry, so he will walk
one square North or one square East each day, continuing on until he reaches Pewter City.
An example of this setup, and one possible path (highlighted), is below.

Grass Grass Grass Pewter City
Grass Grass Grass Grass
Pallet Town Grass Grass Grass

Unfortunately Pikachu has bad eyesight, so he can’t tell exactly where Pewter City is,
and he needs your help. You have an old map that says it will take i days for Pikachu to reach
Pewter City, not including the day he arrives. Thus, for the above example, i is five. In
addition, the message tells you that Pewter City is u units North of Pallet Town, so in the
above example, u is two.

As you send Pikachu off on his journey, he knows he must go i squares total and u
squares up, but he hasn’t decided on his exact route. This makes you wonder how many
different routes he can take (i.e. how many distinct paths there are between Pallet Town and
Pewter City in which Pikachu only moves North and East)? Unfortunately the old map only
has the values of u and i in Roman numerals!

Recall that Roman numerals are computed as follows:

= 1

V=5

X=10
L=50
C =100

Roman numerals are normally arranged greatest to least from left to right, and the
numerical value is the sum of the numerical values of the digits. However, a single digit
cannot be repeated more than 3 times, so we place a smaller digit in front of a larger one to
denote deducting the smaller digit from the larger. Here are some examples:

=3
V=4
XIV=14
XIX=19

Should you need more explanation or examples, you may visit this chart.

Input Format

The input consists of multiple test cases, each consisting of two lines.

The first line of each test case contains a single string, representing the Roman
numeral for i.

The second line of each test case also contains a single string, representing the
Roman numeral for u.

Output Format

For each test case, output an integer representing the number of paths from Pallet
Town to Pewter City. You can be guaranteed that the solution will be less than
Integer.MAX_VALUE. However, it may be helpful to use type ‘long’ for intermediary
computation.

Input Limits
e You can be guaranteed that the inputs will be valid Roman numerals expressed as
capital letters
e You can further be guaranteed that the numeric value of i will be less than or equal to
that of u (i.e. the inputs represent a valid grid)
e No Roman numerals will be used beyond I, V, X, L, and C

Sample Input Sample Output Explanation

\ 1 i=4,u=4

v Represents a 4x1 grid
One path:
4N

1] 3 i=3,u=1

I Represents a 2x3 grid
Three paths:

1N, 2E

1E, 1N, 1E

2E, 1N

http://literacy.kent.edu/Minigrants/Cinci/romanchart.htm

9. Intermediate Problem - Avoiding Trainer Battles

You've just emerged (victoriously) from a series of battles. Unfortunately, you won only
by the skin of your teeth, and now all of your Pokemon are incapacitated. At this moment, you
stumble upon a veritable minefield of trainers itching for a battle.

You do have a 2-D array map([][] of size m x n representing a map. You wish to go
from map[0][0] to map[m-1][n-1] while avoiding all of the trainers. Thankfully, you won’t be
completely blindsided, as we’ve compiled for you a list of all trainers, as well as the direction
they’re facing. Each trainer can see everything in a straight line in the direction he or she is
facing, until his or her line of sight meets a wall or another trainer. The moment you cross a
trainer’s line of sight, you will have no choice but to do battle with that trainer.

You can walk on empty space, but you cannot walk through walls or trainers.Given this
information, you want to find the shortest path through the map involving no battles.

Input Format

The input file consists of multiple test cases.

The first line of each test case contains two integers, m and n, representing the height
and width of the grid respectively. These are passed as ints m and n in the Java stub.

The next m lines of the input represent the 2D array map. Each line contains n

(1]

characters. Each character is either a “#” indicating a wall, a “.” indicating an empty space, or

” o«

one of the following characters “v”, “>”, “<” or “*”, indicating a trainer facing a particular

direction (for instance, “v” is a trainer facing downwards). This is passed as a 2D array char[][]
map in the Java stub.

Output Format

For each test case, output a single boolean, true if it is possible to reach your
destination without encountering a single trainer, false otherwise. The format of true and false
is determined by how Java converts booleans to strings

Input Limits
There will be at most 10 test cases.
1<=m,n<=100

Sample Input Sample Output Explanation

55 false There is no way to get
..... around the trainer without
..... crossing his or her line of
>, ... sight

true

Traveling all the way to the
right, then 2 steps down,
then all the way to the left,
then 2 steps down, then all
the way to the right will help
you get to your destination

10. Advanced Problem - Between n Rocks and a Diglett’s Cave

On your journey as a Pokemon trainer you find yourself in one of the many caves in
the land of Hoenn. You spend many hours trying to find your way out of the cave but you get
tired of having to continually use Rock Smash. Rather than waste time smashing rocks, you
decide to sit down with a map of the cave and devise a program to determine the least
number of rocks you need to break to get out of the cave

We will give you a 2D array of integers representing the map and your starting and
ending locations. If you can stand on space the corresponding element of the array will
contain 0, 1 if it contains a rock, and 2 if you can’t stand on it. You can move from a space up,
down, left, or right, not diagonally. You should output the minimum number of rocks needed to
get through and -1 if there is no path.

In the sample input we visualize the array with X for false, O for true. Indexing starts
with (0,0) in the top left, (row, column).

Input Format

The input file consists of multiple test cases in order.

The first line of each test case consists of 6 integers separated by spaces. The first
two integers are rows and cols. The second two are startr and startc, and the final two are
endr and endc. The next rows lines consists of cols characters each a 0, 1 or 2 meaning the
same thing as the diagram. The goal is to move from (start, startc) to (endr, endc).

Output Format

For each test case, output a single integer, representing the number of rocks we need
to break to get to our destination. If it is not possible to reach our destination, output -1
instead.

Input limits
0 < rows*cols <= 10000

Sample Input Sample Output Explanation

461005 1 The grid has 4 rows and 6
222000 columns, with starting point (1,0)
001000 and ending point (0,5). We need
001000 to break one rock to reach our
002000 destination.

571003 -1 The grid has 5 rows and 7
2210022 columns, with starting point (1,0)
0211200 and ending point (0,3). It is not
0022220 possible to reach our destination.
0000000

2222222

571003 3 The grid has 5 rows and 7

2210022 columns, with starting point (1,0)
0211200 and ending point (0,3). We need
0012220 to break 3 rocks to reach our
0000000 destination.

2222222

11. Advanced Problem - Pokemon Training

There are some people who think that Pokemon training is merely walking around
randomly in tall grass looking for wild Pokemon to battle. These people are wrong; you have
managed to get Pokemon training down to a science - you can even influence what wild
Pokemon you meet in wild grass! You are attempting to train one of your Pokemon to be able
to defeat the Elite Four in a particular patch of wild grass which contains numPokemon
different types of Pokemon, and thus, you wish to obtain as many experience points as
possible in one round of training.

Your Pokemon begins at startHP hit points, and will lose a fixed amount of hit points
with every battle, depending on what wild Pokemon he or she battles. Also, for each wild
Pokemon you successfully defeat (without reaching 0 hit points), you will gain a certain
number of experience points, also depending on the wild Pokemon you fought. Your
Pokemon will not recover hit points in between battles, and you can stop your training any
time you wish.

Thus, given a list of wild Pokemon you can encounter (you can encounter the same
Pokemon more than once if you wish), what will be the maximum number of experience
points you can gain without needing to go back to the Pokemon center to heal?

Input Format

The input file consists of multiple test cases.

The first line of each test case contains two ints numPokemon and startHP, the
number of different types of Pokemon, as well as the starting hit points of your own Pokemon.

The next numPokemon lines of input each represent one type of Pokemon you can
encounter in the wild grass. Each line contains two ints, damageDealt and xpGained, the
exact damage dealt to your Pokemon in defeating this wild Pokemon, and the resultant
number of experience points gained after defeating it.

Output Format
For each test case, output a single int, representing the maximum number of
experience points you can gain without reaching 0 hit points.

Input Limits
There will be at most 10 test cases.
1 <= numPokemon <= 400
1 <= startHP <= 400
1 <= xpGained <= 1000

Sample Input Sample Output Explanation

15 40 You can defeat 4 Pokemon,

110 each time taking 1 point of
damage and receiving 10

experience points.

311
720
411
23

25

You can defeat two of the
second Pokemon and one of
the third Pokemon, receiving
4 +4 + 2 =10 points of
damage, and gaining 11 +
11 + 3 = 25 experience
points.

12. Advanced Problem - Island Ferries

Piplup lives on a group of icy cold islands, numbered from 1 to numlslands. Today, he
needs to get from island 1, which he is currently on, to some island numbered destlsland.
However, it is particularly cold today, so he does not feel like swimming. Instead, he will take
special ferries from island to island to reach his destination.

There are numFerries ferries in total, each which has a route from one island to
another island, with a fixed cost. No route between two islands has more than one ferry
servicing it, and each ferry can only be used once. However, the ferry captains have decided
to be particularly scheming today! They are trying to fleece our poor Piplup for as much
money as possible. However, due to special regulations, they are not able to just outright
demand more money. Instead, what they have decided to do is to secretly shuffle their routes
such that Piplup will have to pay the most money to get to his destination.

Thus, before Piplup begins his journey, the captains of ferries which begin at the same
island will collude with each other to swap destinations amongst themselves (while keeping
each ferry at the same cost). For example, if there are two ferries leaving from island 2, which
lead to islands 3 and 4, for cost 20 and 30 respectively, they could choose to swap
destinations amongst themselves, so that the cost to reach island 4 is 20, and the cost to
reach island 3 is 30 instead.

Help Piplup to determine how much he will have to spend to reach his destination,
assuming the ferries shuffle themselves into the worst configuration possible!

Input Format

The input file consists of multiple test cases.

The first line of each test case contains two ints, numlslands and numFerries, the
number of islands and ferries available.

The second line of each test case contains one int, destlsland, the number of the
island which Piplup wishes to reach

The next numFerries lines of input represent one ferry each. Each line contains three
ints, startlsland, endisland, and ferryCost.

Output Format

For each test case, output a single int, representing the minimum amount Piplup will
have to spend to reach his destination, assuming the ferries shuffle themselves into the worst
configuration possible for him.

Input Limits
There will be at most 10 test cases.
1 <= numlislands <= 10,000
1 <= numFerries <= 40,000
1 <= ferryCost <= 1,000,000

Sample Input

Sample Output

Explanation

33 9 The captains of the first and
3 second ferry will switch
1210 destinations, so that it will
135 cost 10 dollars to reach
234 island 3 from island 1, but
only 5 dollars to reach island
2 from island 1. Then, the
best route will be to travel to
island 2 for cost 5, then to
island 3 for cost 4.
56 18 The captains on the first
5 island will shuffle themselves
1210 such that it will cost 8 dollars
138 to reach island 2, 9 to reach
149 island 3, and 10 to reach
2510 island 4. Then, any route to
359 island 5 will cost a total of 18

458

dollars.

13. Advanced Problem - Professor Oak’s Challenge

After completing many challenges, Professor Oak presents you with a final challenge.
He reveals this mysterious formula:

|

I
S =

< |-
<

where x, y, and z are all positive integers. For a given limit lim, he defines N(lim) to be
the number of integer solutions which satisfy x <y <= lim.

This formula is said to reveal the ancient secrets to how Pokemon were formed.
Unfortunately, even Professor Oak cannot figure out how to calculate N(lim) quickly. He asks
your team to figure it out for him.

Input Format
The input consists of multiple test cases, each which consists of a single integer lim.

Output Format
For each test case, output a single integer, representing the value N(lim).

Input Limits
1 <= lim <= 50,000,000

Sample Input Sample Output Explanation

15 4 These are the only solutions:
x=3, y=6, n=2

x=4, y=12, n=3

x=6, y=12, n=4

x=10, y=15, n=6

1000 1069 Trust us.

