

Contest Problems
Philadelphia Classic, Fall 2016

Hosted by the Dining Philosophers
University of Pennsylvania

Rules and Information

This document includes 12 problems. Novice teams do problems 1-8; standard teams
do problems 5-12.

Any team which submits a correct solution for any of problems 1-4 will be assumed to
be a novice team. If you are not a novice team, please skip problems 1-4.

Problems 1-4 are easier than problems 5-8, which are easier than problems 9-12.
These problems are correspondingly labeled “Novice”, “Intermediate”, and “Advanced.”
Order does not otherwise relate to difficulty.

You may use the Internet only for submitting your solutions, reading Javadocs or Python
documentation, and referring to any documents we link you to. You may not use the
Internet for things like StackOverflow, Google, or outside communication.

As you may know, you can choose to solve any given problem in either Java or
Python. We have provided stub files for all questions in both languages that takes care
of the input parsing for you. Do not modify any of the parsing or output code. Just fill
out the stub methods in each file and submit it with exactly the same name.
Do not modify any of the given methods or method headers in our stub files! They are
all specified in the desired format. You may add class fields, helper methods, etc as you
like, but modifying given parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem
solved. A team’s number of incorrect submissions will be used only as a tiebreaker.

Some problems use Java’s “long” type; if you are unfamiliar with them, they’re like an
“int”, but with a (much) bigger upper bound, and you have to add “L” to the end of an
explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

1. Ancient Greetings

The creators of PClassic have encountered a strange device while on an excavation trip
before PClassic 1738. Every time the device is fed a person’s name, it blurts out a greeting.
After opening up the device and trying to reverse engineer it, the creators of PClassic have
discovered that the device only blurts out the greeting “Good morrow” followed by the person’s
name. However, they have been trying to reprogram the device to use a different greeting.
Specifically, they have been trying to use the more modern greeting “Hello” instead, but they
have not yet been able to reprogram the device. Can you help them reprogram the device?

Your program will be given a string S representing a person’s name. You must return the
greeting: “Hello ” followed by the string S followed by a period.

Sample Input Sample Output Explanation

Newton Hello Newton. The required greeting is
“Hello Newton.”

Charles Babbage Hello Charles Babbage. The required greeting is
“Hello Charles Babbage.”

2. Dot Matrix Printer Problems

Peace Bro! It’s PClassic 1970. Things have been pretty crazy lately. The war in Vietnam
is winding down, the North Tower of the World Trade Center has just been finished, and the
Environmental Protection Agency has just been formed. Amidst all of this progress, trouble is
brewing in PClassic land. The organizers, always keen on using the latest technologies, have
insisted that the PClassic logo, a large capital “P”, be printed on the newest Dot Matrix Printer.
These printers work by printing dots from left to right, sequentially filling in each row of an
image. Despite how simple this sounds, the PClassic organizers have been listening to Lucy in
the Sky with Diamonds by the Beatles for too long and seem too disoriented to complete the
task. Can you help them out?

The logo will be printed on a grid Nx(N-1) grid. The Dot Matrix Printer can either print a
dot or no dot in each cell represented by a “X” for a dot and an “_”(underscore) for a cell that
doesn’t contain a dot. Your task is to draw the PClassic Logo (a capital “P”) on this grid based
on the size of the input (N). The longer vertical part of the P will be of length N (where N is an
odd number). The horizontal parts of the P are of length N-1. The second horizontal part of the
P will start on the exact middle row. Your input will be N and your output should be the string
representing the Logo (including newline characters).

Sample Input Sample Output Explanation

5

XXXX

X__X

XXXX

X___

X___

The longer vertical side has
length 5. The horizontal parts
have lengths 4. The second
horizontal part is on the 3rd
row.

7 XXXXXX

X ____ X
X ____ X
XXXXXX

X _____
X _____

X _____

The longer vertical side has
length 7. The horizontal parts
have lengths 6. The second
horizontal part is on the 4rd
row.

3. Athenian Voter Fraud

It is PClassic 503BC, and the Greek city-state of Athens developed the first known
democracy on the planet. The Athenian system was a direct-democracy, meaning that every
tax-paying Athenian who has completed their military training as ephebes could vote directly on 1

legislation. As you can imagine, as the first democratic state, Athens suffered from problems in
its democratic system. Namely, it had widespread corruption and rampant voter fraud.

However, the Athenians think you can help with your fancy computers: they want you to
write a program which detects which voters have committed voter fraud. Every voter is issued a
unique integer identifier which qualifies them to vote in the city. Every time an Athenian casts a
ballot, their identifier is recorded. Your program will be given an array votes which contain the
identifier for every ballot which was submitted. Your program should return the identifiers of
voters who voted more than once. You can return the identifiers in any order.

Note: All identifiers are between 0 and 10,000.

Sample Input Sample Output Explanation

123,452,12,123

123 123 voted twice

14,15,14,15,16,14 14,15 14 voted three times and 15
voted twice

102,103 none Everyone voted once

1 https://en.wikipedia.org/wiki/Ephebos

4. ENIAC Accumulating

The ENIAC (Electronic Numerical Integrator And Computer) was the first electronic 2

general-purpose computer. It was built right here at Penn, and when it came online in PClassic
1946 it was one thousand times faster than existing machines, and could calculate missile
trajectories in seconds. While the ENIAC was truly revolutionary, its architecture included some
interesting quirks. For example, the ENIAC operated on base ten integers, not binary ones. It
contained 20 accumulators (basic memory units), which stored base ten representations of
integers and could perform an astonishing 5000 operations every second.

You are tasked with implementing the most basic of these operations: incrementation.
Your program will allow ENIAC to take a base ten integer stored in an accumulator and increase
it by 1. Specifically, your program will be given an array a of length n + 1. a represents an n
digit positive integer, and each element of a is a digit. For example [0, 1, 2, 3]
represents the number 123. Note that a is always 0-padded. Your program should increment a
by 1.

Sample Input Sample Output Explanation

0,1,2,3

0,1,2,4 123 + 1 = 124

0,9,9,9 1,0,0,0 999 + 1 = 1000

0,1 0,2 1 + 1 = 2

2 https://en.wikipedia.org/wiki/ENIAC

5. Tricky Triangular Triples

Welcome to PClassic 250 BC! You are in Ancient Rome, where you have been working
hard on creating the designs of the very first aqueducts. You have been given the important task
of creating a support system that will hold the aqueduct. Fortunately, you have read a recently
published text from the Greek mathematician, Pythagoras, about the applications of the
Pythagorean Theorem in bridge construction. Inspired, you want to create a right triangular
support structure where the length of the aqueduct is the hypotenuse and the length of the two
support beams are the base and the height. However your building materials have already been
cut into standard size cubes so you would like to make structures that don’t require cutting or
modifying your bricks. Given the length of the hypotenuse in bricks you would like to determine
all the possible combinations of leg lengths that don’t require cutting any bricks (that is the
lengths are whole numbers when measured in bricks).

You will be given a positive integer that is the length of the aqueduct you want to
construct. Your task is to return all possible configurations of the other two sides that are of
positive integer length. Output each configuration as a separate element in a list in the format a
b where a is in ascending order and b is in descending order in respect to the other
configurations.

If there are no possible integer configurations, return an empty list.

Sample Input Sample Output Explanation

5 [3, 4, 4, 3] 32 + 42 = 52

42 + 32 = 52

25 [7, 24, 15, 20, 20, 15, 24, 7] 72 + 242 = 252

152 + 202 = 252
202 + 152 = 252
242 + 72 = 252

3 [] There are no configurations
where the base and height
are integers.

6. Fastidious Farming

It's PClassic 10,000 BC, and you're working on the cutting edge of technology -
agriculture. Specifically, you're competing to farm the maximum quantity of crops with limited
resources.

You want to grow two kinds of crops, creatively named A and B. They each take a
specific amount of water to grow and require a specific number of hours of tending (labor) per
unit. Water and labor are both difficult to come by, and you have a limited amount of each.
However, you want to make sure to use exactly all of the water and labor you do have access
to, in order to not waste any resources.

Your task is to determine how many of each kind of crop you should grow, given the
exact number of units of water and labor you can use. That is, you will have two integers on the
first line of input separated by a space, representing the amount of water and labor,
respectively, necessary to grow one unit of crop A. Similarly, the second line will have two
integers separated by a space representing the amount of water and labor, respectively,
necessary to grow one unit of crop B. Finally, the third line will have two integers separated by a
space representing the amount of water and labor you should use. You need to output the
amounts of crop A and crop B you should grow, respectively, as two integers separated by a
space.

At maximum, one distinct integer solution will be possible. If no nonnegative integer
outputs are possible, output "-1 -1" to indicate that there is no solution.You can assume that the
inputs are nonnegative integers.

Sample Input Sample Output Explanation

1 4
3 8
7 24

4 1 4 units of crop A require 4
units of water and 16 units of
labor. 1 unit of crop B
requires 3 units of water and
8 units of labor. The total is 7
units of water and 24 units of
labor.

11 13
5 17
102 176

7 5 7 units of crop A require 77
units of water and 91 units of
labor. 5 units of crop B
require 25 units of water and
85 units of labor. This totals
to 102 units of water and 176
units of labor.

1 5
2 10
5 4

-1 -1 No quantity of crop A and
crop B will use exactly the
correct amount of water and
labor.

7. Treasons and Senators

Good morning from Philadelphia Classic 1763 and you're already helping Ben Franklin’s
readers plot a “revolt”. Many historical revolutionary authors went under pseudonyms to publish
their work, Publius or Martha Careful anybody? (Alexander Hamilton’s and Ben Franklin’s
pennames respectively.) Ben Franklin, however, has concocted another plan to disguise his
attention. In order to successfully disseminate his freedom loving message Ben Franklin has
“edited” some of the potentially “dangerous” words in his newspaper articles with their
anagrams. However many of the readers are quite confused by these mysterious anagrams.
Therefore Ben Franklin’s readers have been grouping together these “anagrammed” words
based on whether they anagram to the same word and ordering these words alphabetically.
However the readers find this extraordinarily time consuming, your job is to write a program for
them to avoid this process.

You will be given a list of words for this task. Your program should return the largest set
of words that all anagram to the same word (meaning they contain the same letters) and return
this set of words in alphabetical order. For this problem, the largest set of words that anagram to
each other will be unique and all words in the initial list are distinct.

Input Limits
There will be at most 100 words in the given list.

Sample Input Sample Output Explanation

dbac dbca dabc dacb dcba
dcab bdca bdac bacd badc
bcad bcda adbc adcb abdc
abcd acdb acbd cdab cdba

[abcd, abdc, acbd, acdb,
adbc, adcb, bacd, badc,
bcad, bcda, bdac, bdca,
cdab, cdba, dabc, dacb,
dbac, dbca, dcab, dcba]

All the “words” are anagrams
of each other so it suffices to
output the words in
alphabetical order.

ab abajn bhsjhs ckn d
efgdhs f ba gjlkj h ihdjs
j khsjahsn ljsk mhsjhs n
okjka pljks qgdhsg rdghs

[ab, ba] Only the first two words are
anagrams of each other so
only those two are returned.
(Note that the length of
strings in the given input may
vary.)

8. Sudoku Solver

Welcome to PClassic 1986 where a new strange puzzle has come out of nowhere to
frustrate thousands of people who try to solve it. This puzzle, called Sudoku, has been created
by the crafty company Nikola who claims to have created the hardest puzzle ever known to
man. The Sudoku puzzle involves a 9x9 grid of numbers, where each cell contains a number
between 1 and 9. Each row and column in the grid contains all the numbers from 1 to 9 only
once. There are also 9 bolded 3x3 squares in the Sudoku puzzle. Each bolded square also
must contain all the numbers from 1 to 9 only once. Sounds hard doesn’t it? However, many
computer scientists around the world believe that the puzzle is very easy to solve using a
computer program. You, as an aspiring computer scientist, wish to write such a computer
program capable of solving these puzzles.

You will be given 9 rows with 9 integers each separated by a space. These integers will
represent values on a Sudoku puzzle. If the integer is 0, then it represents an empty value. You
will return 9 rows with 9 integers where every integer is a value between 1 and 9 inclusive. In
the sudoku solution corresponding to your output, each row, each column, and each box must
contain the values 1 to 9 only once. Note: You will get a maximum of 15 empty squares.

A sample sudoku puzzle is shown below (left side is the puzzle and the right side is the
solution).

Sample Input Sample Output Explanation

7 9 6 8 5 4 3 2 1
2 4 3 1 7 6 9 8 5
8 5 1 2 3 9 4 7 6
0 0 7 0 6 5 8 4 2
0 2 5 4 1 8 7 6 3
4 0 8 0 2 3 5 1 9
6 1 4 5 9 7 2 3 8
5 8 2 3 4 1 6 9 7
3 7 9 6 8 2 1 5 4

7 9 6 8 5 4 3 2 1
2 4 3 1 7 6 9 8 5
8 5 1 2 3 9 4 7 6
1 3 7 9 6 5 8 4 2
9 2 5 4 1 8 7 6 3
4 6 8 7 2 3 5 1 9
6 1 4 5 9 7 2 3 8
5 8 2 3 4 1 6 9 7
3 7 9 6 8 2 1 5 4

The solved sudoku solution is
shown above. The sample
output contains the digits 1-9
in every row, column, and
bolded box only once.

9. Time Travel Tree Traversal

As you know every PClassic has a theme. In 2013 the theme was time travel. In that
spirit the last question was to write a program that could travel through time. It was an extremely
hard question. The only team that attempted to solve it ended up with a program that split time
into two parallel timelines. Unfortunately, since each alternate timeline also included the
branching program it resulted in an exponential explosion of alternate timelines. After the
contest the organizers have to clean up all those extra branches of reality, a process that is
quite time consuming. Every time there is a split in a timeline A, it creates two new timelines B
and C.

Two timelines D and F share some common ancestor G. If D split off from G m splits
ago, and F split off from G n splits ago, we say that the distance between D and F is m + n. The
amount of time it takes to cleanup time is proportional to the maximum distance between any
two timelines. For example if timeline A splits into timelines B and C, and then there is another
split in B creating timelines D and E, the maximum distance is from D (or E) to C. Their common
ancestor is A. D split from A 2 splits ago and C split from A 1 split ago so the distance between
them is 3. The PClassic organizers wrote a program to figure out what this maximum distance
would be but forgot to return it to this timeline. We would like you to recreate it for us.

You will be given a list of ordered triples of integers (a, b, c) such that a, b, and c are
between 0 and n-1 inclusive where n is the total number of timelines. Each triple (a, b, c)
indicates that timeline ‘a’ split into timelines ‘b’ and ‘c’. Note that if a timeline spawns no new
timelines it will never appear in the first position in an ordered triple. Additionally timeline 0 will
always be the initial timeline, so 0 will never appear in the second or third position of a triple.
You will return an integer indicating the largest distance between two timelines.

In the sample input the first line is the number of triples and each line after that contains a single
triple

Sample Input Sample Output Explanation

2
0 1 2
2 3 4

3 The distance between
timelines 1 and 3 is 3.

6
0 1 2
2 3 4
3 5 6
4 7 8
7 9 10
5 11 12

6 The distance between
timelines 11 and 9 is 6.

10. ENIGMA

Something as simple as World War II is not enough to stop PClassic from happening!
However, the contestants of PClassic 1943 have been asked to help out with the war effort by
cracking the German ENIGMA cipher.

One method that the British have developed to crack the ENIGMA is to make use of
statistical biases in "human-generated" randomness. The ENIGMA cipher needs a random
password to work, but for some lazy operators, instead of relying on proper randomness
generation techniques, have just been randomly typing on a keyboard instead. The Allied forces
want your help to figure out which is which, so that they can win World War II!

Your task is to read in pairs of binary strings and figure out which is generated using a
strong random number generator (i.e. flipping a coin) and which is not. To aid in this problem,
we have provided two sample files of data (Enigma.random.txt and Enigma.nonrandom.txt). The
first contains truly random strings on each line; each character in the string is generated by
selecting 0 or 1 using a strong random number generator. The second contains "human
generated" random strings, which are created by ENIGMA operators randomly typing on a
keyboard: letters typed using the left hand are encoded as 0, and letters typed using the right
hand are encoded as 1. Each string will consist of 500 binary numerals. Clearly it is impossible
to write a program the exactly solves this problem since any string could be generated by a
random process. Instead what we want is for you to use the provided data to come up with
some heuristics that exploit the fact that people are not truly random.

For each line of input (which will not be drawn from the sample files provided to you, but
will be generated in a similar manner), output either "random", if the first string is truly random,
or "nonrandom", if the first string is generated by typing.

Note: Since this problem is probabilistic in nature, it may be possible to solve even if
your solution doesn't pass 100% of the provided sample input. On the other hand, even if your
solution does pass 100% of the provided sample, it may fail on our test inputs.

Sample Input Sample Output Explanation

01010101001010101010
01100001010111000100

nonrandom The first was generated by
randomly typing on a
keyboard, the second was
generated by flipping a coin

10101110000010011000
01001010111010110100

random The first was generated by
flipping a coin, the second
was generated by randomly
typing on a keyboard

11. Minimizing a Maritime Merchant’s Costs

Good morrow from PClassic 1653! It is the age of exploration and Philadelphia is a
bustling center of trade. This year the contest’s corporate sponsor is a local merchant who
hopes that the contestants can solve a problem for his business (the 17th century organizers
were much less concerned with conflicts of interest). The merchant has many goods he needs
to move to far corners of the world, but unfortunately many of the destinations do not have direct
shipping routes from Philadelphia. Each ship has a set of ports that it stops at, visiting each in
turn in a loop. Ships do not charge based on how much of their journey the cargo takes but with
simply a flat charge when the cargo is unloaded. Thus the merchant needs to minimize the
number of times his goods will have to change ships. He wants you to write a program that will
compute this minimum number of stops.

You will be given an array of lists of integer ids. Each list corresponds to a ship and its
contents represents the ids of the stops that ship makes. You will also be given the ids of the
starting and ending port of the shipped goods. You will output the minimum number of ship
transfers needed to get from the starting port to the ending port. If you cannot reach the
destination, output -1 instead.

Input Limits

There will be at most 2000 ships.
Each ship will visit at most 2000 ports.

The first line of each input contains the number of ships N, the maximum number of ports M,
and the starting and stopping ports. The next N lines list the stops each ship makes so each line
will contain integers from 0 to M-1. Note that is possible for no ship to visit a port.

Sample Input Sample Output Explanation

2 4 0 2
0 1 3
1 2

1 You need to ride from port 0
to port 1 on the ship 0 and
then from port 1 to 2 on ship
1

2 4 1 2
0 1 3
1 2

0 You can ride directly from 1
to 2 without any transfers

3 9 0 8
0 1 2
4 2
4 8 1

1 You can ride from 0 to 1 and
then 1 to 8 using the first and
last ships.

12. Newton's Nightmare

It is PClassic 1666 and Sir Isaac Newton is experimenting with optics and prisms, getting
ready to publish his famous treatise Opticks . He has a number of layers of glass and other
materials with different heights and refractive indices, and for his experiment to succeed, he
needs to shine a beam diagonally through these layers to hit a given target. Of course, it isn't as
easy as just aiming the beam directly at the
target: you are familiar with Snell's law, which
states that when a light beam crosses over to a
new material, it refracts (changes direction) as

follows: (refer to the diagram on n2

sin θ1 = n1

sin θ2

the right, image from Wikipedia).

Newton's light beam starts at (0, 0) on a
2D plane. There are some layers of materials in
between these two points, stacked parallel to the x-axis. For instance, there could be a layer of
glass (refractive index 1.33) with height 3, followed by a layer of diamond (refractive index 2.4)
with height 1. Your job is to figure out what angle above the x-axis you need to shoot the light
beam at so as to hit some point (x, y). For simplicity, the value y will be equal to the sum of all
heights (i.e. the point you need to hit will be at the very top of all layers; in the above example,
the value of y would be 3 + 1 = 4). Help Newton to complete his experiment!
Note: Your answer will be rounded to the nearest 0.0001 degree. There will be at most 40000
layers of materials.

Sample Input Sample Output Explanation

1 3
3 4.5

45.0000 There is only one layer of
material, of height 3.
Shooting at a 45 degree
angle, you will hit (3, 3), since
the light never refracts.

2 2
1 1
1 2

33.0272 There are two materials, both
of height 1, Though the first
(with y values 0 to 1) has
refractive index 1, and the
second (y values 1 to 2) has
refractive index 2. Shooting
the light beam at a 60 degree
angle above the x-axis, the
beam will refract between the
two layers and hit (2, 2)
correctly

