

Contest Problems

Philadelphia Classic, Fall 2018
Hosted by the Dining Philosophers

University of Pennsylvania

Rules and Information

This document includes 12 problems. Novice teams do problems 1-8; standard teams do problems
5-12.

Any team which submits a correct solution for any of problems 1-4 will be assumed to be a novice
team. If you are not a novice team, please skip problems 1-4.

Problems 1-4 are easier than problems 5-8, which are easier than problems 9-12. These problems are
correspondingly labeled “Novice”, “Intermediate”, and “Advanced.” Order does not otherwise relate
to difficulty.

You may use the Internet only for submitting your solutions, reading Javadocs or Python
documentation, and referring to any documents we link you to. You may not use the Internet for
things like StackOverflow, Google, or outside communication.

As you may know, you can choose to solve any given problem in either Java or Python. We have
provided stub files for all questions in both languages that takes care of the input parsing for you. Do
not modify any of the parsing or output code. Just fill out the stub methods in each file and submit
it with exactly the same name.
Do not modify any of the given methods or method headers in our stub files! They are all specified in
the desired format. You may add class fields, helper methods, etc as you like, but modifying given
parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem solved. A team’s
number of incorrect submissions will be used only as a tiebreaker.

Some problems use Java’s “long” type; if you are unfamiliar with them, they’re like an “int”, but with a
(much) bigger upper bound, and you have to add “L” to the end of an explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

←-- A friendly reminder you should not do this.

Disclaimer: We are not affiliated with Nintendo
or Pokemon in any way. We do not own
Pokemon or the images used in this packet. All
rights belong to the original owners/creators.

1. Nicknames

Ash is terrible at nicknaming his Pokemon.
He has given you a proposed nickname and
your job is to tell him why his nickname is
terrible by pointing out the longest
consecutive appearance of any character in
the name. If there are multiple sequences
of the same length, return the first one. You
can assume the name only contains
alphanumeric characters (a-z, A-Z, 0-9).
Note, lowercase characters are NOT the
same as uppercase characters.

Input Format
A string of alphanumeric characters. The string will be at least 1 character long and at most
20,000 characters long.

Output Format
The longest consecutive sequence of characters in that string.

Sample Input Sample Output Explanation

aaabbbaaaabbb aaaa

“a” appears four times in a
row, which is the maximum
consecutive substring.

bbbbbaaaaab bbbbb While both “b” and “a”
appear five times in a row,
the “b” sequence appears
first.

2. Proximity

There are many possible places within the grass that you
can travel. However, it would be helpful to know the
locations of any nearby wild Pokemon at each of your
potential travel locations. Given a list of possible travel
locations, we will try to identify the two closest Pokemon
from a known list of Pokemon locations.

Input Format
An integer array L consisting of one or more integers, representing the known Pokemon
locations, and another integer array M consisting of one or more integers, representing
potential travel locations. L and M will be at most 50 integers each.

Output Format
An integer array that is twice as long as the number of elements in M that contains the two
closest Pokemon locations for each travel location in M. The two closest integers should
appear with the closer number first. If two integers in L are equally close to an integer in M,
the smaller number should be chosen first. Pair order should correspond to the order integers
appear in M.

Sample Input Sample Output Explanation

[1, 2, 4, 5]

[2, 7, 3]

[2, 1, 5, 4, 2, 4]

Returns the two closest integers for
each integer in the second list.
The first location is 2, so the closest
pokemon to that location are 2 and
1 in order of closeness.
The second location is 7, so the
closest pokemon to that location
are 5 and 4 in order of closeness.
The third location is 3, so the closest
pokemon to that location are 2 and
4 in order of closeness (because
they are equally close in this case 2
is put first because it is the smaller
number).

[1]

[2, 3, 4]

[1, 1, 1, 1, 1, 1] If the first list only has one
integer, it is the only option.

3. Beat That Clefairy

Archer, the new leader of Team Rocket, wants to steal millions of rare
candies to beef up his Pokemon. He must beat five Clefairies in a set
number of moves to battle Lady Celeste, whose Pokemon holds rare
candies. He is down to the last Clefairy and has given you a list of
moves he can use, as well as the Clefairy’s remaining health. He has
three moves left to use and wants to know how many combinations of
moves he can use to reduce the Clefairy’s health down to 0.

Input Format
The Clefairy’s starting health on the first line. The second line is the integer list of damage
calculations separated by a comma and space. Note that in the input boxes below they
appear to be on multiple lines, but they are all on one line in the test case.

Output Format
An integer for the total number of ways he can drop the Clefairy’s health down to exactly 0.

Sample Input Sample Output Explanation

3

1, 2, 3

0 The only combination of
damage is 1+2+3 which is
not equal to 3.

100

50, 92, 88, 6, 25,

9, 100, 55, 0, 8,

-25

2 The combinations are
92+0+8 and 25+100-25. Note
that the order doesn't
matter (the second choice
goes over 100 before going
back down) since we could
easily rearrange it to be
25-25+100 instead.

4. Career Pivot

After a series of brutal losses to various gym leaders, Ash and Gary have unfortunately
decided to pivot from their original career and study computer science. In class, they learned
about binary numbers and converting between decimal and binary. However, Team Rocket
has still not given up on Ash’s Pikachu, and managed to steal and lock Pikachu up in a cage.
As usual, Gary comes to the rescue with his Umbreon and finds the cage in a forest. On the
cage, there is a list of integers and a mysterious operation called PKM with the following
definition:

PKM is an operation between two numbers in binary form, A and B, where the ith digit of A
PKM B is 1 if and only if exactly one of the ith digits of A or B is 1. For example:

001 PKM 011 = 010

In order to unlock the cage, the password requires the minimum result of using the PKM
operation on any two integers in the list in decimal form. Save Pikachu!

Input Format
Array of positive integers that contains at least two elements with bounds of: 0 <= x <= 10^6

Output Format
Return the minimum value (NOT the pair that produces the minimum)

Sample Input Sample Output Explanation

[5, 3, 4, 2, 1] 1 2 = 10
3 = 11
10 PKM 11 = 01 = 1
Choosing 2 and 3, the
operator will return 0 for the
tens place and 1 for the ones
place, resulting in 1 in
decimal form which is the
minimum possible value.

[10, 13] 7 10 = 1010
13 = 1101
1010 PKM 1101 = 0111 = 7
The only two possible values
are 10 and 13, in which the
operator will return 7 in
decimal form.

5. Portals

Dawn is stuck in Team Galactic’s headquarters and needs to get out quickly. There might be
portals around that can help her escape. Dawn can only move in the 4 cardinal directions,
North, East, South, or West, and each step takes 1 second. Travelling through a portal,
though, is instantaneous.

. = Empty space, can travel through
= Wall, cannot travel through
$ = Starting location
& = Ending location
A, B, C, D, … = Portals

There will be at most 26 pairs of portals (capital letters of the alphabet). You can travel into
either portal and get out of the matching paired portal. The portals will always be paired with
another with the same capital letter. There can be as few as 0 portals. The portals are named
in increasing alphabetical order: if there are 3 portals for example they will always be called
A, B, and C pairs, not arbitrary letters. However, the location they appear in the maze is not
necessarily in order.

Note that there will always be a start, end, and a possible escape route, so there will always
be a distance to print. Print out the fastest time that Dawn can get through the maze and
escape.

Input Format
An integer n which is the number of test cases
For each test case:
An integer r and c which are number of rows and columns respectively.
4 <= r <= 100, 4 <= c <= 100
Next r lines are the map of Team Galactic’s headquarters

Output Format
A single integer which is the fastest time Dawn can get through the maze and escape.

Sample Input Sample Output Explanation

2

12 10

##########

#$.......#

#........#

#.....A..#

#........#

#..B.....#

#........#

#........#

#..A..B..#

#........#

#.......&#

##########

12 10

 ######

 #....#

 #....#

####..A..#

#........#

#..B.....#

#......#.#

#......#.#

#..A..B#.#

#...####.#

#.$.# #&#

10

12

Dawn can take 6 seconds to
get to the Portal B that is
closest to her, then from the
other Portal B she takes 4
more seconds to reach the
exit.

Dawn can take 3 seconds to
get to the Portal A that is
closest to her, then from the
other Portal A she takes 9
more seconds to reach the
exit.

6. Gotta Catch ‘Em All

Team Rocket has stolen Ash’s Pikachu (for the millionth
time), and demands a ransom. He must catch a specific
Pokemon to trade for his beloved Pikachu. Team Rocket
has given him a list of Pokemon numbers as well as the
number that they want. Being the helpful villains they
are, Team Rocket decided to sort the rows and columns.
This means that for every number i, every other number

on the same row as i and to its left is less than i, and every number to its right is greater than i.
Moreover, every other number on the same column as i and above it is less than i, and every
number below it is greater than i. Help Ash find that ransom Pokemon.

Input Format
The integer you are looking for on the first line. The number of rows (N) on the second line. N
more lines each serving as a row of the 2-D array (ex. 1, 2, 3, 4, 5 are the five numbers on the
first row). The length of the arrays will be at least one and less than or equal to 250.

Output Format
The index of the integer (separated by comma, no spaces). If not in the array, output “Pikachu
is lost”

Sample Input Sample Output Explanation

15

3

1, 2, 3, 4, 5

6, 7, 8, 9, 10

11, 12, 13, 14, 16

Pikachu is lost 15 is not part of the 2-D array.

44

6

10, 20, 30, 40, 50

11, 21, 31, 41, 51

12, 22, 32, 42, 52

13, 23, 33, 43, 53

14, 24, 34, 44, 54

15, 25, 35, 45, 55

4, 3 44 is in the fifth row and fourth
column. Note that indexes start
at 0.

7. Professor Oak’s Palindromes

A little known fact about Professor Oak is that he LOVES palindromes. Therefore, it’s obvious
that he loves Pokemon with palindrome names (random fun fact: there are only 4 Pokemon
with palindromic names: Eevee, Girafarig, Ho-Oh, and Alomomola). Recently Oak has
discovered a completely new region with unknown Pokemon species. He plans to name each
new species with a palindromic name and attempts to write a program that will generate
palindromes to be potential names. However, Professor Oak doesn’t write code very well (his
PhD is in Pokemon Studies, not Computer Science), so his program actually just prints a
string of random characters and random length. Given one of Professor Oak’s random strings,
can you look through it and return the longest palindromic substring? The longest
palindromic substring could be as short as 1 character or as long as the entire string. If there
are multiple longest palindromic substrings with the same length then return the one that
comes first in the string (in other words closer to the beginning of the string).

The random string will only contain lowercase letters.

Input Format
An integer n which is the number of test cases.
For each test case:
A string s which is the random string that Professor Oak’s
program generated. The string will be no longer than 1000
characters and at least 1 character long.

Output Format
A string which is the longest palindromic substring.

Sample Input Sample Output Explanation

3

fwsanavanaklcdks

abc

racecar

anavana

a

racecar

anavana is the longest
palindromic substring

a is the longest palindromic
substring that is closest to
the beginning

racecar is a palindrome by
itself, so the longest
palindromic substring is the
whole string

8. Homefun, not Homework

Ash is terrible at math (which is probably why he eventually dropped out of school to become
a Pokemon trainer). He promises to give you 100 PokeDollars if you do his homework for him
(note: we won’t actually give you 100 PokeDollars to solve this problem). Since you are a very
busy person (but you want the money!), you decide to write a program to solve the problems.

Equations are given in the format A / B = k, where A and B are variables represented as strings,
and k is a real number (floating point number). Given some queries, return the answers. If the
answer does not exist, return -1.00.

Example:
Given a / b = 2.0, b / c = 3.0.
queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ? .
return [6.0, 0.5, -1.0, 1.0, -1.0].

According to the example above, these are the arrays
you will be given in the stub method:
equations = [["a", "b"], ["b", "c"]],
values = [2.0, 3.0],
queries = [["a", "c"], ["b", "a"], ["a", "e"], ["a", "a"], ["x", "x"]].

The input is always valid. You may assume that evaluating the queries will result in no
division by zero and there is no contradiction. You may assume that 0 will not be an answer to
any of the equations. NOTE: If a query variable was not listed in a prior given equation, you
cannot evaluate it at all. The answer should be -1.00.

The answers will automatically be rounded to the second decimal point and printed on
separate lines in the output based on the array of answers you send in. There should be NO
rounding during calculations.

Input Format
An integer n which is the number of given equations
For each given equation:
A string A, a string B, and a double k that should be read as A / B = k
1 <= k <= 100

Output Format
An answer for each query on their own line, in order of given queries.

Sample Input Sample Output Explanation

2

a b 2.0

b c 3.0

5

a c

b a

a e

a a

x x

6.00

0.50

-1.00

1.00

-1.00

a / c = (a / b) * (b / c) = 2.0 *
3.0 = 6.0

b / a = (a / b) ^ (-1) = (2.0) ^
(-1) = 0.5

a / e = -1.0, since e does not
exist in any given equations

a / a = 1.0, because any non
zero number over itself is 1

x / x = -1.0, since x does not
exist in any given equations.
This should not evaluate to
1.0.

9. Strange Unowns

Lucas is trying to make a team of k unowns from a list of n total unowns. He is very particular
about the type of team he wants, and specifically wants unowns with attack levels that are
very close to each other. In addition, the unowns are already in a particular order in the list,
and Lucas wants his team of k unowns to be next to each other in the list. Lucas would like to
see all of the options he has, so that he can make a better decision. Given a list of n attack
levels, with each attack level corresponding to a unown, show the difference between the
highest and lowest attack level of each team that Lucas can make. Help Lucas make his
dream team!

Input Format
A non-negative integer, k, indicating the size of the team that Lucas wants to make, followed
by a list of integers of size n indicating the unown attack levels. k is greater than 2, and n is
greater than or equal to k . 2 <= k <= n <= 10,000,000

Output Format
A list of integers indicating the difference in attack level for each possible team of size k.

Sample Input Sample Output Explanation

2 1 1 0 There is only one possible
team in this case, with
unowns with attack level 1
and 1. The difference
between these attack levels
is 0.

5 1 2 3 4 5 6 4 4 There are two possible
teams in this case, and the
difference within each team
is 4.
5 - 1 = 4, 6 - 2 = 4

10. Rectangles

A pack of Ledyba requires your assistance. They
are looking for a new grass field to live in, but
since the fields can be very large and have many
unusable areas, they need your help. Ledyba love
berries but hate rocky areas, so they want to know
the total area with berries that is not rocky.
Your input will contain a series of rectangles, each
rectangle will be described by the coordinates of
its lower left corner and upper right corner. First
you will have the rectangle which represents the
whole field. Then there will be two lists, one with

the rectangles corresponding to the rocky areas and another corresponding to the areas
without berries. Your task is to find the total area inside the field which has berries and isn’t
rocky (you just need to do it one field at a time, the Ledyba will decide which one to move in
based on other factors also).
Luckily you know that there is no intersection between any two rocky areas in the lists nor
between any berryless areas. However, it may happen that some of them are outside the
grass field, so pay attention.

Input Format
An integer representing the number of test cases.
One array of size 4 containing the coordinates of the whole field rectangle in the following
format: () where () are the cartesian coordinates of the lower left corner , y , x , yx0 0 1 1 , yx0 0
of the rectangle and () the cartesian coordinates of the upper right corner of the , yx1 1
rectangle.
One list of arrays of size 4 containing the coordinates of rectangles without berries in the
same format above.
One list of arrays of size 4 containing the coordinates of rectangles with rocky area in the
same format above.
Notes: There will be 10 test cases of increasing number of rectangles in the lists. The last case
will have rectangles in each list. You may assume that the area of the rectangle is less 01 4
than or equal to in all test cases.01 8

Output Format
An integer indicating the total area.

Sample Input Sample Output Explanation

2

0 0 4 4

1 1

0 0 2 3

3 2 4 4

1 1 6 6

1 1

1 0 5 5

2 4 7 7

8

4

For the second test, the field has area 16 but 6 of
it has no berries and 2 of it is rocky. No area is
both rocky and berryless.
For the second test, the field has area 25 but 16 of
it has no berries, 8 of it is rocky and 3 of it is both
rocky and berryless. Thus there is an area of
25-16-8+3=4 which has berries but not rocks.

11. Elevator

You are a fantastic trainer unbounded by common conventions, in fact you are so awesome
you can have any number of Pokemon. This leads to some issues though. For example, since
you wouldn’t be able to carry so many Pokeballs they all must follow you in the real world at
all times, just like Pikachu and Ash.
In your most recent journey you were faced with a problem. To get to the next gym you must
climb a very steep cliff. Luckily, there is an elevator that you can use, it has some restrictions
however. It is a special elevator with two shafts, one on the top and one on the bottom of the
precipice. If the difference in weight in the shafts is less than a specific number defined for
safety than you can activate the elevator and the shafts will change place.
Now the question is: given the safety restrictions on the elevator is it possible for you to take
all your pokemons up the cliff using the elevator?
Notes: Your Pokemon are very organized and will follow your instructions perfectly. You can
activate the elevator from the bottom and the top of the cliff or even from the inside.

Input Format
An integer n which is the number of test cases.
For each test case:
Two positive integers, the first one representing the
number of pokemon you own and the second
representing the maximum difference in weight
between the shafts such that the elevator will operate
safely.
A list of numbers representing the weight of each one of your Pokemon and you.
You may assume each test case contains at most Pokemon.Instructions for use02 · 1 5

Output Format
Output either “True” or “False”

Sample Input Sample Output Explanation

3

3 5

1 2 3

4 5

1 2 3 100

5 5

6 23 8 20 1

True

False

True

In the first test case you can transport each pokemon
individually.
In the second test case, to transport the pokemon with
weight 100 you would need a counterweight of at least
95 which is much more than the total weight of all
other pokemon.
The third test case is more interesting and you should
think about it by yourself.

12. Pokepark

You just bought a brand new plot of land
around a beautiful lake. You are planning
on building a park for your lovely Pokemon
and to do so you must separate the plot in
N different sections. Unfortunately, to
separate the different sections you have to
pay fees to the government. Whenever you
separate a section of area A+B into one
section of area A and another of area B you
must pay a fee of A+B to the government. You can only separate a section in two each time.
All sections must border the lake and the edge of the the plot, they must also be connected.
This way, each section will always have two neighbors after the first two divisions.
Each final section borders the sections that appears before and after it in the list and the first
and last sections border each other. All sections also border the lake and the border of the
plot itself.
Given the areas of the sections you want to create, find out the minimum fee you will have to
pay the government.

Input Format
An integer n which is the number of test cases.
For each test case: An integer representing the number of sections you want to divide the plot
in and a list of integers representing the area of each of the sections of the plot we are going
to build in order.

Output Format
An integer identifying the minimum amount of taxes that you can pay to build your park.

Sample Input Sample Output Explanation

2

8

1 2 3 8 2 2 1 3

3

1 10 2

61

16

For the first test case we can make the
separations as follows:
[[[[1 2] 3] 8][[[2 [2 1]] 3]]

For the second test case, the input is equivalent
to 2 1 10, so we can get 16 with [[2 1]
10]

