
Contest Problems
Philadelphia Classic, Fall 2021

Hosted by the Computer Science Society
University of Pennsylvania

Rules and Information

This document includes 12 problems. Novice teams do problems 1-8; standard teams do problems
5-12.

Any team which submits a correct solution for any of problems 1-4 will be assumed to be a novice
team. If you are not a novice team, please skip problems 1-4.

Problems 1-4 are easier than problems 5-8, which are easier than problems 9-12. These problems are
correspondingly labeled “Novice”, “Intermediate”, and “Advanced.” Order does not otherwise relate to
difficulty.

You may use the Internet only for submitting your solutions, reading Javadocs or Python
documentation, and referring to any documents we link you to. You may not use the Internet for
things like StackOverflow, Google, or outside communication.

As you may know, you can choose to solve any given problem in either Java or Python. We have
provided stub files for all questions in both languages that take care of the input parsing for you. Do
not modify any of the parsing or output code. Just fill out the stub methods in each file and submit it
with exactly the same name.

Do not modify any of the given methods or method headers in our stub files! They are all specified in
the desired format. You may add class fields, helper methods, etc as you like, but modifying given
parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem solved. A team’s
number of incorrect submissions will be used only as a tiebreaker.

Some problems use Java’s “long” type; if you are unfamiliar with them, they’re like an “int”, but with a
(much) bigger upper bound, and you have to add “L” to the end of an explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

1

1. Porco’s Mysterious Call…
MysteriousCall.py, MysteriousCall.java

Porco the Porcupine hears something on his
walkie-talkie! It sounds like a bunch of letters. At the
end of the message, the walkie talkie announces that
the last k letters are reversed. Porco is determined to
decipher the message from his walkie talkie, whoever
it is from. He has all the letters but now needs to
reverse the last k letters to figure out the message.
Help Porco come up with an algorithm so that he can
figure out the coded word.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

reversedMessage(message, k)
● message: a string that represents a message that needs to be deciphered.
● k: an int that represents the number of last letters that needs to be reversed.

Your function should return a string, deciphered message.

Constraints
1 ≤ |𝑚𝑒𝑠𝑠𝑎𝑔𝑒| ≤ 10000
0 ≤ 𝑘 ≤ |𝑚𝑒𝑠𝑠𝑎𝑔𝑒|

Input
The first line represents the number of test cases T.
For each test case:
The first line contains message.
The second line contains k.

Output
For each test case, print a string representing the deciphered message.

(cont. on next page)

2

1. Porco’s Mysterious Call...

Sample Input Parsed Input Sample
Output

Explanation

1
heoll 3

reversedMessage(“heoll
”, 3)

hello Reverse the last 3 letters
from “oll” to “llo.”

1
buzz 0

reversedMessage(“buzz”
, 0)

buzz The last 0 letters are
reversed, so the word is fine
the way it is.

1
cissalcp 8

reversedMessage(“cissa
lcp”, 8)

pclassic The length of the word is 8,
and k is 8, so the whole word
is reversed.

3

2. Secret Code
SecretCode.py, SecretCode.java

Polly the Penguin is writing Panda Panda secret
messages. These are top secret messages so she
writes them with a secret code. In Polly’s code each
letter corresponds with a number: a-1, b-2, …,
z-26. Polly chooses some integer k to add to the
number corresponding to each letter in her
message. The coded message contains the letters
whose numbers correspond to the letters in the
original message plus k.

For example, if k=2 then a → c because 1 + 2 = 3 and 3 corresponds with c. Also note that there
is wraparound when the number is greater than 26: if k=2, then z → b, because 26 + 2 = 28 and
28 % 26 = 2 which corresponds to b. There is also wraparound for numbers less than 1. For
example, k = -2 then a → y. Also, Polly’s message can contain punctuation and spaces. These
characters are unaffected by Polly’s code. Polly tells Phil what k is. Help Phil decode Polly’s
message.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

decode(s, k)
● s: a string containing symbols, spaces and lowercase characters that represents the

coded message.
● k: an int that represents the number added to each alphabetical character in s.

Note: only shift the alphabetical characters.

Your function should return the decoded string.

Constraints
0 ≤ |𝑠| ≤ 100
− 1000 ≤ 𝑘 ≤ 1000

(cont. on next page)

4

2. Secret Code

Input
The first line represents the number of test cases T.
For each test case:
The first line contains s
The second line contains k

Output
For each test case, print a string representing the deciphered message.

Sample Input Parsed Input Sample
Output

Explanation

1
rovvy
10

decode(“rovvy”,
10)

hello r = 18
o = 15
v = 22
y = 25

r - 10 = 8 = h
o - 10 = 5 = e
v - 10 = 12 = l
y - 10 = 15 = o

1
ibgg
7

decode(“ibgg”, 7) buzz i = 9
b = 2
g = 7
i - 7 = 2 = b
b - 7 = -5 % 26 = 21 = u
g - 7 = 0 = 26 = z
*Since a = 1, we must wrap
around to the end of the
alphabet, so 0 can also be
considered as z

5

1
zab
-1

decode(“zab”, -1) abc z = 26
a = 1
b = 2
z - (-1) = 26 + 1 = 27 % 26 =
1 = a
a - (-1) = 1 + 1 = 2 = b
b - (-1) = 2 + 1 = 3 = c

6

3. Dangerous Dinosaur Dodgeball
DinoDodgeball.py, DinoDodgeball.java

Ptolemy the Pterodactyl is playing a game of
dinosaur dodgeball with his pterodactyl
pals. In this version of dodgeball, there are
two types of balls: fire balls and ice balls.
Additionally, the game is very quick in that
every pterodactyl throws some amount of
balls (which may be zero) at other
pterodactyls all at the same time.
Unfortunately, these pterodactyls aren’t very
good at dodging, so each pterodactyl is hit

by all balls thrown at them. Each ball is given a number which corresponds to its temperature.
Ice balls are represented by negative numbers and fire balls are represented by positive
numbers. Help determine the number of pterodactyls such that the sum of the temperatures
of balls that hit them is zero.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

netTemperature(n, temperatures)
● n: an int representing the number of pterodactyls.
● temperatures: A list of dodgeballs thrown where each element is of the form [x, y, t]

x represents the number of the pterodactyl who is throwing the ball
y represents the number of the pterodactyl who gets hit by the ball
t represents the temperature of the ball that is thrown.

Your function should return a single integer which represents the number of pterodactyls who
were hit by balls whose temperatures sum to zero.

Constraints
1 ≤ 𝑛 ≤ 106

1 ≤ 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒𝑠) ≤ 106

0 ≤ 𝑥, 𝑦 ≤ 𝑛 − 1
− 1000 ≤ 𝑡 ≤ 1000

(cont. on next page)

7

3. Dangerous Dinosaur Dodgeball

Input
The first line represents the number of test cases T.
For each test case:
The first line contains n and k.
For the following k lines:
Each line contains x, y, and t

Integer n representing the number of pterodactyls
Integer k representing the amount of balls thrown
x represents the number of the pterodactyl who is throwing the ball
y represents the number of the pterodactyl who gets hit by the ball
t represents the temperature of the ball that is thrown.

Output
For each test case, print the number of pterodactyls that have a sum of 0 temperature.

Sample Input Parsed Input Sample
Output

Explanation

1
3 4
0 1 5
0 1 -5
1 0 3
1 0 -3

netTemperature(3, 4,
[[0, 1, 5], [0, 1,
-5], [1, 0, 3], [1, 0,
-3]])

3 Pterodactyl 0 is hit with balls of
temperatures 5 and -5, so the
sum of temperatures is 5 + (-5) =
0. Pterodactyl 1 is hit with balls of
temperatures 3 and -3, so the
sum of temperatures is 3 + (-3) =
0. Pterodactyl 2 is not hit by any
balls, so the sum of temperatures
of balls that hit it is also 0.

1
4 8
3 0 2
1 2 4
0 1 6
2 3 2

netTemperature(4, 8,
[[3, 0, 2], [1, 2, 4],
[0, 1, 6], [2, 3, 2],
[1, 3, -4], [0, 3, 2],
[3, 2, -5], [0, 2,
1]])

2 Pterodactyl 0 → 2
Pterodactyl 1 → 6
Pterodactyl 2 → 4 + (-5) + 1 = 0
Pterodactyl 3 → 2 + (-4) + 2 = 0
Pterodactyls 2 and 3 have
temperatures that sum to zero.

8

1 3 -4
0 3 2
3 2 -5
0 2 1

1
4 4
3 1 4
1 2 1
2 0 -100
0 3 0

netTemperature(4, 4,
[[3, 1, 4], [1, 2, 1],
[2, 0, -100], [0, 3,
0]])

1 Pterodactyl 0 → -100
Pterodactyl 1 → 4
Pterodactyl 2 → 1
Pterodactyl 3 → 0
Only pterodactyl 3 has
temperatures that sum to zero.

1
2 2
0 1 17
1 0 -12

netTemperature(2, 2,
[[0, 1, 17], [1, 0,
-12]])

0 Pterodactyl 0 → -12
Pterodactyl 1 → 17
None of the pterodactyls have
temperatures that sum to zero.

9

4. Love Letter
LoveLetter.py, LoveLetter.java

Paul the Polar Bear wants to write a lovely
note to his friend, Piper the Parrot. His only
way to get a message from his house in the
Arctic to Piper's abode in a faraway tropical
forest is to send strings of loose Scrabble
tiles that he picked up from local litterers.

Since Paul graduated at the top of his class
at the University of Polar Bears, he is quite

eloquent, and can easily spell out his message using the tiles. However, due to his intelligence
and tendency to overachieve, he wants his message to have double meanings, so that he can
fully express all his heart to Piper.

He wants to write a letter on the back of each tile, so that they can spell out new words and a
new message. This would be a trivial task for Paul on its own, but he is very picky and does
not want the same Scrabble tile letter to have different letters written on their backs. That is, if
there was a Scrabble tile A with the letter B on the back, every Scrabble tile A must also have B
on their backs. The opposite must also be true: for every Scrabble tile with the letter B written
on its back, its original Scrabble letter must be A. Help Paul determine if there exists a way for
him to write both of his messages!

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

checkMessages(s, t)
● s: a string containing some number of lowercase letters, representing Paul’s original

message
● t: a string of lowercase letters, of the same length as s, representing Paul’s desired

message

Your function should return true if the valid mapping exists and false otherwise.

Constraints
0 ≤ |𝑠|, |𝑡| ≤106

10

(cont. on next page)

4. Love Letter

Input
The first line represents the number of test cases T.
For each test case:
The first line contains s
The second line contains t

Output
For each test case, output “yes” or “no” depending on your answer.

Sample Input Parsed Input Sample Output Explanation

1
abc
def

checkMessages
(abc, def)

yes a ↔ d, b ↔ e, c ↔ f

1
abc
dde

checkMessages
(abc, dde)

no Characters ‘a’ and ‘b’
cannot both be matched
to character ‘d’.

1
abc
abc

checkMessages
(abc, abc)

yes Characters can match to
themselves.

1
aabbcc
hkccbb

checkMessages
(aabbcc, hkccbb)

no Character ‘a’ cannot
match both characters ‘h’
and ‘k’.

11

5. Pompous Peacocks
PompousPeacocks.py, PompousPeacocks.java

Percy the Peacock is going to a festival
this spring. He knows there will be a
beautiful peacock, Pearl, who will be
attending. Pearl has always attracted
many other peacocks to the festival, all
who want to show off their feathers to
Pearl.

Percy is a businessman, and knows this
is a great opportunity to run a betting
pool on which of these N peacocks will

win Pearl’s heart. He has been doing some statistical research and knows that Pearl always
chooses peacocks with the most vibrant colors and most confident strut. Thus, he has
quantified the vibrancy and confidence of every peacock who will be vying for Pearl’s
attention and put this data into arrays for analysis. For any two peacocks A and B, Peacock A
beats Peacock B if A's vibrance is at least as high as B's vibrance, A's confidence is at least as
high as B's confidence, and A and B both don't have the same confidence and vibrance. A
peacock is unbeatable if there is no other peacock that can beat them. Help Percy find the
number of the unbeatable peacocks so that he can run his betting pool for maximum profit.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

unbeatable(peacocks)
● peacocks: 2D array where each row i has two integers v and c representing i-th

peacock’s vibrance and confidence values

Your function should return an integer representing the number of unbeatable peacocks.

Constraints
1 ≤ |𝑝𝑒𝑎𝑐𝑜𝑐𝑘𝑠| ≤ 104

0 ≤ 𝑣, 𝑐 ≤ 104

(cont. on next page)

12

5. Pompous Peacocks

Input
The first line represents the number of test cases T.
For each of the T cases:
There are a variable number of lines, representing each peacock, followed by an empty line.
Before the empty line, each line contains v and c representing the vibrance and confidence of
the peacock.

Output
For each test case, output the number of unbeatable peacocks.

Sample Input Parsed Input Sample Output Explanation

1
0 1
1 2

unbeatable([[0,
1], [1,2]])

1 The second peacock
beats the first because
1 > 0 and 2 > 1.

1
1 2
1 4

unbeatable([[1,2]
, [1,4]])

1 The second peacock
beats the first because
4 > 2 and 1>=1.

1
1 3
0 5

unbeatable([[1,3]
, [0,5]])

2 The first peacock
cannot beat the
second because the
second has a greater
confidence. The
second peacock
cannot beat the first
because the first has a
greater vibrancy.

1
3 4
3 4

unbeatable([[3,4
], [3,4]])

2 Both peacocks cannot
beat each other
because they have
equal stats.

13

6. Picky Puupuu’s Preferences
PickyPuupuu.py, PickyPuupuu.java

Puupuu the Pudu is a very hungry pudu.
Today, she is in the mood to eat some
berries. While roaming around searching
for food, luck strikes her, and she finds a
rectangular field full of berries! However,
there are rivers that run vertically and
horizontally which partition the field into
m rows and n columns of land patches.
Each of these m*n land patches contain
an integer amount of berries between 1

and 9 inclusive. Puupuu only wishes to eat berries from a subset of these land patches. In fact,
the subset of land patches must form a 3x3 square in the field, and the amount of berries
within each patch of the 3x3 square must form a magic square. A magic square is a 3x3 square
of numbers such that the sum of the numbers in each row, column, and diagonal is identical.
Note that the values within the square do not need to be distinct. Help Puupuu discover
whether or not there exists a set of land patches where she can eat the berries from.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

magicSquare(grid)
● grid: a 2D array of arrays of integers between 0 and 9

Your function should return true if there exists a magic square and false otherwise

Constraints
0 < 𝑚, 𝑛 ≤ 1000

Input
The first line represents the number of test cases T.
For each of the T cases:
There are a variable number of lines, representing each row of the grid, followed by an empty
line. It is guaranteed that each row has the same number of elements, where each element
represents the number of berries.

14

Output
For each test case, output “true” or “false” depending on your answer.
(cont. on next page)

15

6. Picky Puupuu’s Preferences

Sample Input Parsed Input Sample Output Explanation

1
2 1 2 7 6
1 1 9 5 1
1 1 4 3 8
2 3 1 4 1

magicSquare({{2,
1, 2, 7, 6},
{1, 1, 9, 5, 1},
{1, 1, 4, 3, 8},
{2, 3, 1, 4,
1}})

true The magic square is
composed of the
values grid[i][j]
where 0 <= i <= 2 and
2 <= j <= 4.
Numerically, the
square is:
2 7 6
9 5 1
4 3 8

1
2 1 7 6
1 9 5 1
1 4 3 8

magicSquare({{2,
1, 7, 6}, {1, 9,
5, 1}, {1, 4, 3,
8}})

false There are no magic
squares in the grid.

1
8 1 6
3 5 7
4 9 2

magicSquare({8,
1, 6}, {3, 5,
7}, {4, 9, 2}}

true The magic square is
composed of the
values grid[i][j]
where 0 <= i <= 2 and
0 <= j <= 2.
Numerically, the
square is:
8 1 6
3 5 7
4 9 2

1
7 7 7
7 7 7
7 7 7

magicSquare({7,
7, 7}, {7, 7,
7}, {7, 7, 7}}

true The magic square is
composed of the
values grid[i][j]
where 0 <= i <= 2 and
0 <= j <= 2.
Numerically, the
square is:
7 7 7
7 7 7
7 7 7

16

7. Cactus Farm
CactusFarm.py, CactusFarm.java

Porco the Porcupine has a farm and is
trying to grow a line of cactuses to the
right of his farm. The line has plots of
soil in a line and a cactus seed in each.
He also has a machine that holds a line
of n hoses such that hoses can hover
above the i-th to (i + n - 1)-th (inclusive)
plot for some i. If he activates the hoses,
special water drops below which
instantly grow the cactus seed.
Unfortunately, some of the hoses are

defective and so their water does not instantly grow the cactus. It is guaranteed that the last
hose is not defective.

He can also shift the location of the machine, in other words, he can change i. Giving grown
cacti extra water does nothing. Adding extra normal water to cactus seeds does nothing.

He first activates the machine on plots 0 to n - 1, which results in an initialPattern, represented
as a string of 0s and 1s, where 0 is a seed and 1 is a grown cactus. Porco wants his cactus farm
to match finalPattern, which is also represented as a string of 0s and 1s, and the last plot is
guaranteed to be a full grown cactus. Given that he can shift and activate the machine any
number of times, can you help Porco find if it is possible for his current cactus farm to match
finalPattern?

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

matchable(initialPattern, finalPattern)
● initialPattern: a string of 0s and 1s that represents the initial cactus farm after the

first activation of the machine. This string ends in 1.
● finalPattern: a string of 0s and 1s that represents the final cactus farm to match.

This string ends in a 1.

Your function should return true or false if it is possible to transform the initial cactus farm to
the final cactus farm.

17

Constraints
1 ≤ |𝑓𝑖𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛| ≤ 2000
1 ≤ |𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛| ≤ |𝑓𝑖𝑛𝑎𝑙𝑃𝑎𝑡𝑡𝑒𝑟𝑛|

Input
The first line represents the number of test cases T.
For the every T lines:
The first line contains initialPattern.
The second line contains finalPattern.

Output
For each test case, output “1” if it is possible to transform the cactus farm or “0” if it is not.

Sample Input Parsed Input Sample Output Explanation

1
1
11

matchable(“1”,
“11”)

1 The machine is first activated
at plot 0, so the initial pattern is
1. He shifts the machine to
plot1 and then activates again
so the resulting pattern is 11.

Activate: 1
Move machine to plot 1 and
activate: 11

1
1
101

matchable(“1”,
“101”)

1 The machine is first activated
at plot 0, so the initial pattern is
1. He shifts the machine to plot
2 and then activates again so
the resulting pattern is 101.

Activate: 1
Move machine to plot 2 and
activate: 101

1
101
111101

matchable(“101”
, “111101”)

1 The machine is first activated
at plots 0 through 2, so the
initial pattern is 101. He shifts
to plot 3 and then activates
again so the pattern is then
101101. He then shifts plot 1
and then activates to get the

18

pattern 111101.

Activate: 101
Move machine to plot 3 and
activate: 101101
Move machine to plot 1 and
activate: 111101

1
101
111

matchable(“101”
, “111”)

0 This is not possible because it
is not possible to turn the
second plot into a 1.

19

8. Peaceful Poles
PeacefulPoles.py, PeacefulPoles.java

Polly the Penguin has formally
declared the South Pole as the
superior pole. Paul the Polar Bear
hears this and declares a war with
the penguins of the South Pole. After
five minutes of intense battle, the
polar bears and penguins have
grown weary of the fighting. After
signing a peace treaty, Polly and
Paul decide to play a cooperative
game to celebrate, using the letters
in the peace treaty.

Polly receives x cards and Paul receives y cards, where each card contains a random lowercase
letter from the treaty, and the cards are ordered in the order they appear in the treaty. In each
round, each animal can choose to put down the card at the top of their deck or not. If both
animals put down the same letter, they gain a point. If they put down different letters, they
lose a point. If only one animal puts down a letter, they lose two points. If neither animal puts
down a letter, no points are gained or lost. The game ends when both animals finish putting
down all of their cards. Given the letters Polly and Paul receive, what is the maximum number
of points they can achieve?

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

maxPoints(s, t)
● s: A string of the letters on Polly’s x cards in order from top to bottom
● t: A string of the letters on Paul’s y cards in order from top to bottom

Your function should return the maximum number of points Polly and Paul can achieve.

Constraints
0 ≤ 𝑥, 𝑦 ≤ 104

Input

20

The first line represents the number of test cases T.
For each test case:
The first line contains s
The second line contains t

Output
Output an integer representing the maximum number of points Polly and Paul can achieve.

(cont. on next page)

21

8. Peaceful Poles

Sample Input Parsed Input Sample Output Explanation

1
us
us

maxPoints(“us”,
“us”)

2 us
us
Both Polly and Paul
can put down “u” in
the first round and
“s” in the second
round, gaining 1
point in each.
2(1) - 0(1) - 0(2) = 2

1
ba
bc

maxPoints(“ba”,
“bc”)

0 ba
bc
In the best possible
game, Polly and Paul
both put down “b” in
the first round,
gaining 1 point, but
they put down
different letters in
the second round,
losing 1 point.
1(1) - 1(1) - 0(2) = 0

1
abcdef
abecdf

maxPoints(“abcde
f”, “abecdf”)

1 ab_cdef
abecd_f
Polly and Paul put
down the same letter
five times, gaining 5
points, but in two
rounds, only one of
them put down a
card, losing a total of
4 points.
5(1) - 0(1) - 2(2) = 1

22

9. Polar Bear Testing
PolarTesting.py, PolarTesting.java

The local zoo is currently experiencing problems with its polar bears: out of a certain number
of bears, one has a disease that will eventually make it shrink to the size of an atom. We
wouldn’t want that!

There are some number of polar bears, and exactly one of them is sick. To test whether a polar
bear is sick, a device can be used to take samples from a subset of polar bears. If one of the
bears selected was sick, the device will turn bright red. However, the results are not
immediate and take several minutes to load.

Your testing process is as follows: you take a fixed amount of devices, and each device touches
a subset of bears. You wait until the devices are done, then see which devices (if any) turn red,
then take the remaining devices to repeat the processes. However, you only have limited time
to complete this process before the sick polar bear shrinks! Given these constraints,
determine the minimum number of devices you need to guarantee you have found the sick
polar bear.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

testing(bears, testtime, totaltime)
● bears: an integer that represents the number of polar bears.
● testtime: an integer that represents how long a device takes to react.
● totaltime: an integer that represents how much time you have to find the sick polar

bear before it shrinks.

Your function should return an integer that is the smallest amount of devices needed to
guarantee that the sick polar bear can be found.

Constraints
1 ≤ 𝑏𝑒𝑎𝑟𝑠, 𝑡𝑒𝑠𝑡𝑡𝑖𝑚𝑒, 𝑡𝑜𝑡𝑎𝑙𝑡𝑖𝑚𝑒 ≤ 106

Input
The first line represents the number of test cases T.
For each test case:
The first line contains bears, testtime, totaltime.

23

Output
Output an integer representing the least number of devices needed to guarantee that the sick polar
bear can be found.

Sample Input Parsed Input Sample Output Explanation

1
4 4 4

testing(4, 4, 4) 2 The first device can test bears
1,2, while the second device
can test bears 1,3. If the first
and second device both turn
red, then we know bear 1 is
sick. If only one of the
devices turns red, either bear
2 or bear 3 are sick
(corresponding to first and
second device respectively).
If none of the devices turn
red, bear 1, 2, and 3 are all
not sick so it must be bear 4
that is sick.

1
4 15 45

testing(4, 15, 45) 1 You can use 1 device 3 times
in a row, each time on a
different bear (bears 1, 2, 3),
to figure out if any of those
bears specifically are sick. If
none of the devices turn red,
bear 4 must be the one that is
sick.

24

10. Panda Land
PandaLand.py, PandaLand.java

Panda Panda is traversing a n x m
bamboo forest where he starts at
the top left corner (1, 1) and
wants to walk to the bottom right
corner (n, m). He can only move
down and right through the
forest.

As the zookeeper, you get to
decide how much bamboo is in
each cell in the grid. However,
each cell has a distinct number of
bamboo in the range 0 through n

* m - 1 inclusive.

Recently, Panda Panda has invented a device that allows him to collect all of the bamboo in
every cell in row r and every cell in column c if he is standing in the cell (r, c). Furthermore, the
bamboo in a cell regenerates as soon as Panda Panda finishes collecting from it, so the
bamboo in a cell can be collected multiple times. Because you want to prevent Panda Panda
from having a monopoly on the bamboo, you want to minimize the amount of bamboo Panda
Panda collects during his walk.

Given Panda's path through the forest as a sequence of moves where "D" represents a move
down and "R" represents a move right, find the minimum amount of bamboo Panda can
collect mod 10^9 + 7.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

pandaLand(n, m, path):
● n: the number of rows in the grid
● m: the number of columns in the grid
● path: A string of length n + m - 2 describing the path from (1, 1) to (n, m) where “D”

represents a move down and “R” represents a move right

25

Your function should return an integer mod 10^9 + 7 denoting the minimum amount of
bamboo Panda Panda can collect.

Constraints
2 ≤ 𝑛, 𝑚 ≤ 105
|𝑝𝑎𝑡ℎ| = 𝑛 + 𝑚 − 2

Input
The first line represents the number of test cases T.
For each test case:
The first line contains n, m which represent the number of rows and columns of the grid respectively.
The second line contains the string path which represents Panda’s path from the top left corner to the
bottom right corner.

Output
Output an integer representing the minimum amount of bamboo Panda Panda can collect.

Sample Input Parsed Input Sample Output Explanation

1
2 2
RD

pandaLand(2, 2, “RD”) 12 10
23

You start at the cell
with ‘1’, which gives
you 3 bamboo.
Then you move
right to the cell with
‘0’, which gives you
4 bamboo. Then
you move down to
the cell with ‘3’,
which gives you 5.

3 + 4 + 5 = 12

1
2 3
RDR

pandaLand(2, 3,
“RDR”)

36 502
314

10 + 8 + 8 + 10 = 36

26

11. Pretentious Peacocks
PretentiousPeacocks.py, PretentiousPeacocks.java

Percy the Peacock found the unbeatable peacocks that
will be at the peacock festival this spring, and is now
feeling accomplished. However, while basking in his
(projected) increased profits, he realized that he can
further optimize his betting business by analyzing the
relationships between the peacock competitors.
Specifically, every peacock p who will be competing for
Pearl the Peacock’s heart at the festival has identified
some singular other peacock, q, to be their main rival--
their archnemesis-- this season.

Each peacock p will have exactly one archnemesis q
and q’s archnemesis need not be p. Peacock p1 and
Peacock pk are rivals if there is a sequence of
archnemeses p1, p2, …, pk (i.e. p2 is the archnemesis

of p1, p3 is the archnemesis of p2 and so on). Unlike in Question 5, no two peacocks have
both the same vibrancy and confidence as another.

Percy wants to use this information to find out who will be the finalists in this tense
competition and exploit the data to run more betting pools. He defines a peacock as “strong”
if none of their rivals can beat them, where “beating” another peacock is still defined as being
more vibrant and confident than them (see Question 5 for full definition). Help Percy find the
number of “strong” peacocks that will be competing, so that he may become the richest
peacock in town from his betting ring.

(cont. on next page)

27

11. Pretentious Peacocks
Implementation Details
Implement the following function. It will be called by the grader once for each test case.

unbeatable(n, m)
● n: A 2D array where the ith row has 2 elements v,c representing the vibrancy and and

confidence of the ith peacock i
● m: An array where the ith element is an int representing the archnemesis of the ith

peacock
Note: i is one indexed so the first element in n is the first peacock

Your function should return the number of unbeatable peacocks.

Constraints
1 ≤ 𝑚. 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛. 𝑙𝑒𝑛𝑔𝑡ℎ ≤ 10000
0 ≤ 𝑣, 𝑐 ≤ 10000

Input
The first line represents the number of test cases T.
For every test case:
The first line contains a number i representing the number of peacocks (aka the length of m and n)
The next i lines contain v, c representing the vibrancy and confidence of the peacocks
The next i lines contain a representing the archnemesis of the peacocks

Output
Output an integer representing the number of unbeatable peacocks.

(cont. on next page)

28

11. Pretentious Peacocks

Sample Input Parsed Input Sample Output Explanation

1
3
1 2
3 4
5 6
2
3
1

unbeatable(3,
[[1, 2], [3,
4], [5, 6]],
[2, 3, 1])

1 Peacocks 1, 2, and 3 all
consider each other rivals
(via the rule that rivals of
their ultimate rival are also
rivals). Only peacock 3 is
strong because none of its
other rivals have a vibrancy
greater than or equal to their
own vibrancy, and none of its
other rivals have a
confidence greater than or
equal to their own
confidence.

1
4
1 1
3 3
4 2
2 2
2
3
1
2

unbeatable(4,
[[1, 1], [3,
3], [4, 2], [2,
2]], [2, 3, 1,
2])

2 Peacocks 1, 2, and 3 all
consider each other rivals.
Peacock 4 considers
peacocks 1, 2, and 3 its rivals.
Only peacocks 2 and 3 are
strong because no other
peacocks they consider rivals
are greater or equal to them
in terms of both vibrancy and
confidence.

1
7
4 5
2 9
2 0
8 4
1 7
2 3
6 9
4
1
1
2
2

unbeatable(7,
[[4, 5], [2,
9], [2, 0], [8,
4], [1, 7], [2,
3], [6, 9]],
[4, 1, 1, 2, 2,
3])

4 Left as an exercise to the
reader.

29

3
3

30

12. New Park on Google Maps
NewPark.py, NewPark.java

Pedro Parrot is designing an amusement park
with many thrilling rides! Because Pedro is a
bird, he somehow designed all these rides to
float in the air. Google wants to mark this park
on Google Maps, so Pedro designed a 2D layout
of the park, where each ride is enclosed in a
rectangular area. Because Google Maps can
only look at the park from top down, Google
Maps may actually underestimate the total area
of the park because some rides overlap. Can you
figure out how many units of area the park looks
like, based on what Google Maps sees?

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

area(rectangles)
● rectangles: a list of rectangles representing the rides of the form [x1, y1, x2, y2],

which are the coordinates of the corners of the rectangle.

Your function should return the units of area mod 10^9 + 7.

Constraints
1 ≤ 𝑥1, 𝑦1, 𝑥2, 𝑦2 ≤ 10000
𝑥1 ≤ 𝑥2
𝑦1 ≤ 𝑦2
0 ≤ |𝑟𝑒𝑐𝑡𝑎𝑛𝑔𝑙𝑒𝑠| ≤ 100000

Input
The first line represents the number of test cases T.
For each test case:
The first line contains the number of rectangles, k.
For the next k lines:
Each line contains four integers x1, y1, x2, y2 -- the coordinates of the corners of each rectangle.

Output

31

For each test case, print an integer representing the total area covered by the amusement park rides
mod 10^9 + 7.

Sample Input Parsed Input Sample Output Explanation

1
1
0 0 4 4

rectangleArea([[0, 0,
4, 4]])

16 There is only one ride, and
its corner coordinates are
(0,0) and (4,4), so the total
area is 4*4 = 16

1
2
0 0 4 4
5 5 6 6

rectangleArea([[0, 0,
4, 4], [5, 5, 6, 6]])

17 There are two rides. The
first ride has corner
coordinates at (0,0) and
(4,4), so its area is 4*4 = 16.
The second rectangle hs
corner coordinates at (5,5)
and (6,6), so its area is
(6-5)*(6-5) = 1. Since the
rectangles do not overlap,
the total area is 16 + 1 = 17

1
2
0 0 4 4
3 3 6 6

rectangleArea([[0, 0,
4, 4], [3, 3, 6, 6]])

24 There are two rides. The
first ride has corner
coordinates at (0,0) and
(4,4), so its area is 4*4 = 16.
The second rectangle hs
corner coordinates at (3,3)
and (6,6), so its area is
(6-3)*(6-3) = 9. The
rectangles overlap in the
square with corner
coordinates (3,3) and (4,4),
so this overlap area is 1.
Thus, the total area is 16 +
9 - 1 = 24

1
3
0 0 4 4
1 3 5 5
1 1 3 8

rectangleArea([0, 0,
4, 4], [1, 3, 5, 5],
[1, 1, 3, 8]])

27 Three rectangles with
much overlap. The areas
of the individual
rectangles are 16, 8, and
14. The total amount of
area that overlaps
(including double
counting and triple

32

counting) is 11. So the
total overall area is 16 + 8 +
14 - 11 = 27

33

