
Contest Problems
Philadelphia Classic, Fall 2022

University of Pennsylvania

PClassic 2022 Fall

Rules and Information

This document includes 12 problems. Novice teams do problems 1-8; standard teams do problems
5-12.

Any team which submits a correct solution for any of problems 1-4 will be assumed to be a novice
team. If you are not a novice team, please skip problems 1-4.

Problems 1-4 are easier than problems 5-8, which are easier than problems 9-12. These problems are
correspondingly labeled “Novice”, “Intermediate”, and “Advanced.” Order does not otherwise relate to
difficulty.

You may use the Internet only for submitting your solutions, reading Javadocs or Python
documentation, and referring to any documents we link you to. You may not use the Internet for
things like StackOverflow, Google, or outside communication.

As you may know, you can choose to solve any given problem in Java, Python, or C++. We have
provided stub files for all questions in all languages that take care of the input parsing for you. Do not
modify any of the parsing or output code. Just fill out the stub methods in each file and submit it
with exactly the same name.

Do not modify any of the given methods or method headers in our stub files! They are all specified in
the desired format. You may add class fields, helper methods, etc as you like, but modifying given
parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem solved. A teamʼs
number of incorrect submissions will be used only as a tiebreaker.

Some problems use Javaʼs “long” type; if you are unfamiliar with them, theyʼre like an “int”, but with a
(much) bigger upper bound, and you have to add “L” to the end of an explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

1. The Smartest People Work on Mechanical Bees

Nick has a suspicion that AI are trying to spy on
him using mechanical bees. Nick also knows that
any mechanical bee will have an odd number of
fuzz follicles whereas a normal bee will have an
even number of fuzz follicles. Nick is so paranoid
that he captures every bee that he sees and counts
the number of fuzz follicles on that bee. Help Nick
find the mechanical bee if it exists. We guarantee
there is at most 1 mechanical bee.

Implementation Details:
Implement the following function. It will be called by the grader once for each test case.

findOdd(arr):
- arr: an array of integers

Your function should return an integer.

Constraints
1 ≤ |𝑎𝑟𝑟| ≤ 104

where x is an element of arr.0 ≤ 𝑥 ≤ 105

Input
The first line contains a single integer t (1 <= t <= 105), denoting the number of test cases.

For each test case, the first line contains a single integer n (1 <= n <= 104) representing the
number of bees Nick captures.

The next line contains n integers x1, x2, …, xn (0 <= xi <= 105), where xi is the number of follicles
on the ith bee.

We guarantee that the sum over all n does not exceed 2*105.

https://www.youtube.com/shorts/hJIxuPrsgw8

Output
For each test case, return an integer representing the number of fuzz follicles on the
mechanical bee. If there is no mechanical bee, output 0.

Sample Input Parsed Input Sample
Output

Explanation

1
5
2 4 7 6 4

findOdd([2, 4, 7, 6,
4]

7 The only odd integer in the
array is 7.

1
1
3

findOdd([3]) 3 The only odd integer in the
array is 3.

1
2
4 10

findOdd([4, 10]) 0 There are no odd integers in
the array, so we return 0.

2. Aaron’s aalmighty AaI aahhhhhh

In 2020 Aaron was part of the team who created the
first general intelligence AI. At the time Aaron was
highly suspicious that the AI could end up turning evil
so he took notes on how he might take down the AI. He
made sure to write his notes using a secret code so that
no AI discovers them.

Now it is 2022 and the AI has taken over the world.
Aaron needs your help to decode the notes,
represented by the string s. He tells you that each page
of notes has a stationary letter, sn. To decode the
message, every letter to the le� of sn needs to be

shi�ed le� (with wrap-around) and every letter to the right of sn needs to be shi�ed right (with
wrap-around). Given a page of notes and the index of the stationary letter, decode the
message.

Implementation Details:
Implement the following function. It will be called by the grader once for each test case.

rotateString(s, n):
- s: the string to rotate
- n: the index that remains fixed

Your function should return a string.

Constraints
1 ≤ |𝑠| ≤ 10000

where n is an index of s0 ≤ 𝑛 ≤ |𝑠| − 1

(cont. on next page)

Input
The first line will contain a single integer t (1 <= t <= 105), denoting the number of test cases.

Each test case consists of multiple lines of input. The first line contains a lowercase string s (1
<= |s| <= 104), the string to rotate. The second line contains n (0 <= n <= |s| - 1), the index of the
letter which stays fixed.

We guarantee that the sum over all |s| does not exceed 2 * 105

Output
For each test case, return a string where characters to the le� of index n are rotated le�, and
characters to the right of index n are rotated right.

Sample Input Parsed Input Sample
Output

Explanation

1
abcdef
3

rotateString(“abcdef”,
3)

bcadfe The character at index 3 is d
and that stays fixed. “abc”
(le� of index 3) rotate le� to
get “bca”. “e f” rotate right to
get “fe”

1
aitakeover
0

rotateString(“aitakeov
er”, 0)

aritakeov
e

The first “a” stays fixed.
Nothing to le� of index 0.
“itakeover” rotated right is
“ritakeover”

1
happy
2

rotateString(“happy”,
2)

ahpyp “p” stays fixed”
“ha” → “ah”
“py” → “yp”

3. Cyle’s Computer Conundrum

Cybersecurity specialist Kyle has planted a virus in
the AI computer network. Kyle is a very sneaky guy.
He doesn't want the AI to discover the virus
immediately so he programmed the virus to slowly
infect computers. Specifically, let ci be the number
of computers the virus infects on day i. We know

that ci is equal to ci-1 + ci-2 + ci-3 for all i > 3. Given
the number of computers infected on the first 3
days and a day n, help Kyle figure out how many
computers will be infected on day n, and return
your answer modulo 108 + 7.

Implementation Details
getNth(c1, c2, c3, n):

- c1: represents the first element of the sequence
- c2: represents the second element of the sequence
- c3: represents the third element of the sequence
- n: represents the number element of the sequence that you should return

Your function should return an integer.

Constraints
1 ≤ 𝑐1, 𝑐2, 𝑐3 ≤ 100000
1 ≤ 𝑛 ≤ 10000

Input
The first line contains a single integer t (1 <= t <= 104), denoting the number of test cases.

The first line of each test case contains three integers representing c1, c2, and c3 respectively
1 <= c1, c2, c3 <= 105. The next line contains n (1 <= n <= 104).

We guarantee that the sum of n over all test cases does not exceed 3*104.

Output
For each test case, return an integer that represents the nth element of the sequence mod 100000007
(10^8 + 7).

Sample Input Parsed Input Sample
Output

Explanation

1
2 3 4
6

getNth(2, 3, 4, 6) 29 The 4th element (a4) is
2+3+4=9
a5 = 3+4+9=16
a6 = 4+9+16=29

1
4 10 17
4

getNth(4, 10, 17, 4) 31 a4 = 4 + 10 + 17 = 31

1
1 1 2
8

getNth(1, 1, 2, 8) 44 a4 = 4, a5 = 7, a6 = 13, a7 = 24,
a8 = 44

4. Monster Mash

As the war rages on, Ethan decides to turn to
biological means to fight the AI invasion and begins
mutating monsters. His tried-and-true strategy for
maximizing mutated monster efficacy is to place
monster eggs in a single line, allowing baby monsters
to fuse with surrounding monsters of the same
species once they are hatched. Ethan will only allow
monsters to fuse if they are a part of a contiguous
sequence of exactly k monsters of the same species, in
order to preserve genetic stability and maximize
output monster strength. A�er k monsters are fused
into a powerful mutated monster, he removes it from

the line to be immediately put to use as a soldier and repeats the fusing process until no more
monsters can be fused. Given a line of hatched monsters, let Ethan know what the final line of
monsters will be a�er all eligible monsters have been fused and deployed.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.
monsterMash(arr, k):

- arr: array of integers
- k: number of consecutive integers needed to fuse

Your function should return an array.

Constraints
1 ≤ |𝑎𝑟𝑟| ≤ 104

where x is an element of arr.0 ≤ 𝑥 ≤ 105

2 ≤ 𝑘 ≤ 105

(cont. on next page)

Input
The first line contains a single integer t (1 <= t <= 105), denoting the number of test cases.

For each test case, the first line contains a single integer n (1 <= n <= 104), representing the
number of monsters. The second line contains n integers x1, x2, ..., xn (0 <= xi <= 105),
representing the species of the ith monster. The third line contains a single integer k, the
number of contiguous monsters of the same species required for fusing.

We guarantee that the sum over all n does not exceed 2 * 105.

Output
For each test case, return a comma-separated list of values surrounded by square brackets
that represents the final line of monsters a�er all possible fusions.

Sample Input Parsed Input Sample Output Explanation

1
5
2 2 4 4 4
2

monsterMash([2, 2,
4, 4, 4])

[4] [2, 2, 4, 4, 4]

1
4
1 2 2 1
2

monsterMash([1, 2,
2, 1])

[] [1, 2, 2, 1] → [1, 1] → []

1
5
3 4 4 4 3
3

monsterMash([3, 4,
4, 4, 3])

[3, 3] [3, 4, 4, 4, 3] → [3, 4, 4, 4,
3]

5. Evacuation Drill

As the A.I. invasion begins, evacuation sirens
blare through the city. Grace has been tasked
with helping civilians evacuate through a
four-way intersection in the shortest amount of
time possible.

At the corner of every intersection is a teleporter
labeled A, B, C, or D (refer to the image below).
Each teleporter can either be 'open' or 'closed'.
When a teleporter 'opens', all other teleporters
close'. 'Open' teleporters allow passage only
from their adjacent 'closed' teleporters. Each
teleporter may 'open' and 'close' multiple times.

Grace is given 4 pieces of information: 1) the order in which teleporters will 'open', 2) how
many seconds the nth teleporter will be 'open', 3) the start and end destination of k civilians,
and 4) the time each civilian arrives at the intersection. Using this information, help Grace find
the shortest time it takes each civilian to traverse the intersection and evacuate successfully.
There are no restrictions on the number of civilians that can cross at one time.

Note: a portal will close right before the next portal opens. For example, if the portal at B
opens at time t=0 and its duration is 5 seconds, a civilian arriving at time t=5 cannot use this
portal.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

evacuate(n, k, order[], duration[], sfx[][]):
- n – the number of times teleporters open
- k – the number of civilians
- order[] – a string array representing the order in which teleporters open (order0 is the first

teleporters to open)
- duration[] - an int array representing the duration that teleporters stay open for (order0 is

open for duration0 time)
- sfx[][3] - a string array where each element has 3 elements: si, fi, xi, si, represents the starting

point for person i. fi represents the finishing point for person i. xi represents the time when
person i arrives at their starting teleporters. You are guaranteed that si != fi.

Your function should return an array that represents the time it takes each civilian to cross the
intersection.

Constraints
1 <= n <= 1000
1 <= k <= 1000
We guarantee that the sum of n over all test cases is <= 1000
orderi <= 106

xi <= 109

Input
The first line contains a single integer t (1 <= t <= 100), denoting the number of test cases.

For each test case, the first line contains two space-separated integers n and k (1 <= n, k <=
1000), representing the number of teleporters and the number of civilians respectively. The
third line contains n characters order1, order2, ..., ordern, where orderi is an element of {A, B, C,
D} denoting the order that the teleporters open. The fourth line contains n integers duration1,
duration2, ..., durationn, (1 <= di <= 106) where durationi is the duration that the ith teleporter
stays open.

The following k lines describe the civilians where the ith line contains si, fi which are elements
of {A, B, C, D} and xi (0 <= xi <= 109). si and fi (integers) represent the start and destination
teleporters of the ith civilian, and xi denotes the time that the civilian arrives at teleporter si.

We guarantee that the sum of n over all test cases does not exceed 1000.

Output
For each test case, output k lines, where the ith line is the minimum amount of time it takes
the ith civilian to reach teleporter fi a�er arriving at the teleporter si at time xi. If the civilian
cannot reach their destination, output -1.

Sample Input Parsed Input Sample
Output

Explanation

1
3 1
A B C
2 3 4
A C 0

evacuate(3,1,
[A,B,C], [2,3,4],
[[A,C,0]])

5 The civilian arrives at
position A at time t = 0.

At time t = 2, the light to B
turns on so the civilian walks
to B. At time t = 5, the light to
C turns on so the civilian
walks to C.

Since the civilian arrived at
time 0 and reaches their
destination at time 5, the
total time it takes them to
reach their destination is 5 -
0 = 5.

1
7 2
A C D A B C D
2 7 3 1 3 2 4
A D 13
B D 5

evacuate(7,2,
[A,C,D,A,B,C,D],
[2,7,3,1,3,2,4],
[[A,D,13],[B,D,5]]
)

5
4

The first civilian arrives at
position A at time t = 13. At
time t = 18 the light to D
turns on so the civilian
moves to position D. The
total time to reach their
destination is 18 - 13 = 5.

The second civilian arrives at
position B at time t = 5. At
time t = 2 the light at C turns
on and stays on until t = 9.
The civilian can move to
position C immediately upon
arrival. At time t = 9, the light
at D turns on so the civilian

can move to position D at
time t = 9. The total time to
reach their destination is 9 -
5 = 4.

1
5 2
A B A B A
5 5 5 5 5
A D 0
B A 10

evacuate(5, 2,
[A,B,A,B,A],
[5,5,5,5,5],
[[A,D,0],[B,A,0]])

-1
0

The first civilian arrives at
position A at time 0 and
wants to go to position D.
However, they cannot get to
position D, so the output is
-1.

The second civilian arrives at
position B at time 10. At time
t = 10, the light at A turns on
and stays on until t = 15. The
civilian can move to position
A immediately upon arrival
at time t = 10. The total time
to reach their destination is
10 - 10 = 0.

1
1 1
B
1
A B 1

evacuate(1, 1,
[B], [1],
[[A,B,1]])

-1 The civilian arrives at
position A at time t=1 and
wants to go to position B.
The light to B turns on at
time t=0 and stays on until
t=1. However, the light turns
off right before t=1, so the
civilian cannot reach
position B.

6. Pluto’s Portals

We've received intel that the robots are hiding a
secret weapon on a coordinate plane. Luckily
for us, Ishaan has been training his dog Pluto
who can help recover this secret weapon. Pluto
starts at the origin (0, 0), and needs to reach the
secret weapon at (w - 1, h - 1). He can only travel
to the right, but luckily there are strategically
placed colored portals on the grid. When Pluto
reaches a portal, he can teleport to any other
portal of the same color. Note that Pluto doesn't
have to take a portal when he reaches it. Let
Ishaan know if Pluto is able to reach the secret
weapon by only moving right and teleporting
through portals of the same color.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

pathExists(w, h, portalArr):
- w: width of grid (y-axis)
- h: height of grid (x-axis)
- n: number of portals (length of portalArr)
- portalArr: an array of tuples of length 3 - the first element is the x coordinate (),0 ≤ 𝑥

𝑖
< 𝑤

the second element is the y coordinate (), and the third element is its color (0 ≤ 𝑦
𝑖

< ℎ

)0 ≤ 𝑐
𝑖

< 10 000

Your function should return a boolean where the function returns True if a path exists that goes from
top le� (0, 0) to bottom right (w-1, h-1) , or False if a path does not exist.

Constraints
The grid is at least of size 2 by 2, so the bottom-le� and top-right coordinate will not be the
same.
2 ≤ 𝑤 ≤ 10, 000
2 ≤ ℎ ≤ 10, 000
1 ≤ |𝑝𝑜𝑟𝑡𝑎𝑙𝐴𝑟𝑟| ≤ 10000
portalArr contains tuples of length 3 in the form (x, y, c) where x, y, and c are integers
In the tuple (x, y, c), portal coordinates x and y represent distinct (x, y) coordinates
0 ≤ 𝑥

𝑖
 < 𝑤

0 ≤ 𝑦
𝑖
 < ℎ

0 ≤ 𝑐
𝑖

< 10, 000

Input
The first line contains a single integer t (1 <= t <= 104), denoting the number of test cases.

For each test case, the first line contains two space-separated integers w and h (2 <= w,h <=
104). The second line contains a single integer n, the number of portals. The following n lines
describe the portals, where the ith line contains xi, yi, ci (0 <= xi, yi, ci <= 104) which represent
the x coordinate, y coordinate, and color of the ith portal.

We guarantee that each portal has a distinct location and that the sum over all n does not
exceed 105.

Output
For each test case, output true if Pluto is able to get from (0, 0) to (w - 1, h - 1) and false
otherwise.

(cont. on next page)

Sample
Input

Parsed Input Sample
Output

Explanation

1
5 5
7
2 0 1
2 1 3
1 2 1
3 2 2
1 3 3
3 3 2
2 4 3

pathExists(5, 5,
[(2, 0, 1),
(2, 1, 3),
(1, 2, 1),
(3, 2, 2),
(1, 3, 3),
(3, 3, 2),
(2, 4, 3)])

false No path exists. The
graph looks like:
..1..
..3..
.1.2.
.3.2.
..3..
In order to reach the
bottom right corner of
the graph, we need to
take a portal of color
3. This is not
possible starting at
the top left because
we can only reach a
portal of color 1 in
the first row. If we
take the portal of
color 1, we can reach
a portal of color 2 in
the second row. We can
take a portal of color
2 to teleport to the
third row. However, we
cannot reach the
portal of color 3 in
the fourth row because
we can only travel
rightwards.

1
2 2
1
0 1 0

pathExists(2, 2,
[(0, 1, 0)])

false No path exists. The
graph looks like:
..
0.
Going all the way
right, we encounter no
portals, so we can’t
leave the first row.

1
5 1
2
1 0 0
2 0 0

pathExists(5, 1
[(1, 0, 0),
(2, 0, 0)
])

true Skipping all portals,
we can go from
(0,0) to (4, 0).

.00..

1
4 3
4
1 0 0
1 2 0
2 0 1
3 1 1

pathExists(4, 3
[(1, 0, 0),
(1, 2, 0),
(2, 0, 1),
(3, 1, 1)])

true A path exists.
From (0,0) we go right
to (1, 0) where we
take the portal color
0 to (1, 2) and we go
right to reach (3, 2).

.01.

...1

.0..

7. Tien’s Teslo Tracking

Tien has self-engineered a Teslo that has location
tracking on any robot he desires. A�er several years, he
has finally chased down and trapped the Android Head
of Food and Agri-Culture (AH-FAC) of the AIs in the city
labyrinth. The city has n buildings labeled 0 to n - 1 that
are connected by n - 1 bidirectional roads. Furthermore,
there is a path between every pair of buildings in the
city. i.e. if you start at any building bi you are guaranteed
that there is a sequence of roads you can travel across to
reach any other building.

AH-FAC always knows where Tien is. In one turn, AH-FAC
will either move along a road to an adjacent building,

stay still, or teleport to any other building in the city. A�er AH-FAC moves, Tien can move along a road
to an adjacent building or stay still. Tien catches AH-FAC if, a�er some turn, Tien and AH-FAC end up in
the same building.

Tien discovered that AH-FAC will always move optimally, but can only teleport at most k times. Given a
map of the city, the starting building of Tien and AH-FAC, and the number of teleports that AH-FAC has,
return the minimum number of turns before Tien catches AH-FAC.

It can be shown that Tien can always catch AH-FAC a�er a finite number of turns.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

minTurns(n, k, ahfacInit, tienInit, streets):
- n: an integer representing the number of buildings
- k: an integer representing the number of teleports that AH-FAC has
- ahfacInit: an integer representing the building that the AH-FAC starts at
- tienInit: an integer representing the building that Tien starts at
- roads: an array of tuples (u, v) of roads that connects buildings u and v

Your function should return an integer representing the minimum number of turns before Tien catches
AH-FAC.

Constraints
3 ≤ 𝑛 ≤ 2 * 105

0 ≤ 𝑘 ≤ 109

0 ≤ 𝑎ℎ𝑓𝑎𝑐𝐼𝑛𝑖𝑡, 𝑡𝑖𝑒𝑛𝐼𝑛𝑖𝑡 < 𝑛
|𝑟𝑜𝑎𝑑𝑠| = 𝑛 − 1

T <= 105

Across all test cases in the multitest: Sum over all buildings is <= 3*105

Input
The first line contains a single integer t (1 <= t <= 3 * 104), denoting the number of test cases.

For each test case, the first line contains a single integer n (3 <= n <= 105) representing the number of
buildings in the city. The second line contains a single integer k (0 <= k <= 109) representing the
number of times AH-FAC can teleport. The third line contains ba (0 <= ba < n), the building that AH-FAC
starts in. The fourth line contains bt (0 <= bt < n, bt != ba)$, the building that Tien starts in. The following
n - 1 lines describe the road of the city where the ith line contains ui, vi, (0 <= ui, vi < n, ui != vi)$ meaning
there is a road between buildings ui and vi.

We guarantee that the sum over all n does not exceed 105.

Output
For each test case, output a single integer representing the minimum number of turns before Tien
catches AH-FAC given that AH-FAC and Tien move optimally.

Sample Input Parsed Input Sample Output Explanation

1
3
0
1
0
0 1
1 2

minTurns(3, 0,
1, 0, [(0, 1),
(1, 2])

2 T-A-2
Initial starting state, where T is
Tien and A is AH-FAC.

T-1-A
AH-FAC makes his only move
away from Tien.

0-T-A
Tien moves closer to the
AH-FAC.

0-T-A
AH-FAC has nowhere to move,
without getting caught so he
does not move.

0-1-x
On the next move, Tien will
catch AH-FAC. That is two
streets moved.

1
4
1
1
0
0 1
1 2
2 3

minTurns(4, 1,
1, 0, [(0, 1),
(1, 2), (2,
3)])

4 T-A-2-3
Initial starting state, where c is
Tien and r is AH-FAC.

T-1-A-3
AH-FAC moves away from Tien.

0-T-A-3
Tien moves closer to AH-FAC.

0-T-2-A
AH-FAC moves away from Tien.

0-1-T-A
Tien moves closer to AH-FAC.

A-1-T-3

AH-FAC cannot move without
being caught next round so
they teleport to node 0.

A-T-2-3
Tien moves closer to AH-FAC.

A-T-2-3
AH-FAC cannot make any more
moves without being caught.

x-1-2-3
Tien catches AH-FAC.

8. Michelle’s Molasses Manos

Oh no! AI robots are on the hunt for Michelle, and they
have invaded her home! Luckily, she sees them
coming and calls for help. Unfortunately, no one
answers. Locked in her room and shaking with fear,
Michelle realizes she must come up with a plan to
stop the robots. She decides to turn to her laptop, as
it's unlikely she'll be able to stop the robots by force.
She gains access to the AI network and discovers she
can shut down the robots in her house if she types in
a compressed secret message composed entirely of
a's, b's and c's. To save memory, the secret message
was compressed into a character array c1, c2, ..., cn

and a length array l1, l2, ..., ln such that the ith character ci is repeated li times. For example, if c
= [a, c, b] and l = [2, 1, 3], the uncompressed message is 'aacbbb'.

Unfortunately, Michelle is SO slow and can only type one letter in 1 second. However, she can
take 1 second to copy a substring of the text she has already typed as long as each letter of the
substring is the same. For example, if Michelle has typed 'abaabbb', the valid substrings she
can copy are 'a', 'aa', 'b', 'bb', 'bbb'}.

Although Michelle can only copy once, she can paste the substring as many times as she likes,
where pasting the substring also takes 1 second. Given a secret message and these
constraints, find the shortest amount of time it will take Michelle to type out the message and
shut down the robots.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

molasses(n, c[], l[]):]
- N - the length of the arrays c[] and l[]
- c[] - An array of characters
- l[] - An array of integers denoting the lengths of the consecutive characters

Constraints
There are T test cases. The sum of all N over the T test cases <= 2*105

The sum over all string lengths is <= 2 * 106

Input
The first line contains a single integer t (1 <= t <= 1000), denoting the number of test cases.

For each test case, the first line contains a single integer n (1 <= n <= 2 * 105) denoting the size of the
length and character arrays. The second line contains n characters c1, c2, …, cn, where ci is an element
of {a, b, c}, and the third line contains n integers l1, l2, …, ln (1 <= li <= 106).

We guarantee that the sum over all the lengths of the uncompressed messages does not exceed 2*106.

Output
For each test case, output a single integer representing the amount of time it will take Michelle to type
out the uncompressed message.

Sample Input Parsed Input Sample
Output

Explanation

1
5
a b a b a
2 3 3 1 2

molasses(5,
[a,b,a,b,a],[2,3,3
,1,2])

10 We copy the first occurrence
of two consecutive aʼs for 1
extra operation. Then, we
paste our copy twice to save
1 operation each for a total
of 11 - 1 + 2 = 10 operations.

3
7
a b c c b a c
3 3 3 9 3 3 6
3
a a a
5 2 2
6
a b c a b c
1 1 1 1 1 1

molasses(6,
[a,b,c,b,a,c],[3,3
,3,9,3,3,6])

molasses(3,
[a,a,a],[5,2,2])

molasses(3,
[a,b,c,a,b,c],[1,1
,1,1,1])

21

6

6

Case 1: Copy 3 cʼs.

Case 2: Print first 3 aʼs, then
copy them. Paste 2 times.
3+1+1+1=6.

Case 3: Actually not copying
is optimal b/c copying would
take 1 extra operation.

9. Give me Passcode, or Give me Death!

Suddenly, Denise finds herself in front of a glass door,
with no memory of how she got there. A line of
numbers a of length n appears on the glass, and in the
palm of her hand the number k is written.

The AI bot speaks:

The passcode is:

With electric shock bars coming closer, help her figure out the passcode before it's too late.

Implementation Details
passcode(arr, k):

- arr: an array of integers
- k: an integer

Your function should return an integer.

Constraints

2 ≤ |𝑎𝑟𝑟| ≤ 106

0 ≤ 𝑎𝑟𝑟[𝑖] ≤ 106

Input
The first line contains a single integer t (1 <= t <= 104), denoting the number of test cases.

The first line of each test case contains two space-separated integers n and k (2 <= n <=106, 1 <= k <=
106)$, denoting the number of elements and value of k for .∗

The second line of each test case contains n integers a1, a2, … ,an (1<= ai <=106), denoting the elements
of the array a.

We guarantee that the sum of n across all test cases does not exceed 106.

Output
For each test case, print a single integer - the passcode as above.

Sample Input Parsed Input Sample
Output

Explanation

1
2 3
13 5

passcode([13, 5],
3)

14

1
2 4
5 3

passcode([5,3],4) 7

1
3 7
17 26 11

passcode([17,26,11
],7)

62

1
5 9
17 22 29 3 30

passcode([17,22,29
,3,30],9)

173

10. Ziwen’s Zapper

In a desperate attempt for survival, Ziwen, chased
closely by violent AI robots, runs into a weapons
warehouse and locks himself inside to keep the
robots at bay. The only functional weapon le� in the
building is a huge zapper gun that requires m
computers to control. Ziwen finds a box with n
batteries to help power the computers. Given a list
of size m with the total amount of power each
computer needs to work, and a list of size n with the
amount of power each battery contains, determine
if Ziwen is able to power on all the computers using
the batteries, in order to use his zapper to clear the
surrounding area of enemy robots. Each battery can
only be used to power one computer. Additionally,
each computer needs an exact amount of power to

run, if the computer is given more or less power than is required it wonʼt run.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

ziwensZapper(n, m, arr1, arr2):
- n: an integer representing the number of batteries
- m: an integer representing the number of computers
- arr1: array of integers representing the power of each battery
- arr2: array of integers representing the power needed by each computer

Constraints:
1 ≤ 𝑛 ≤ 20
1 ≤ 𝑚 ≤ 20

where x is an element of arr1.1 ≤ 𝑥 ≤ 1000
where y is an element of arr2.1 ≤ 𝑦 ≤ 1000

Input
The first line represents the number of test cases T.
For each test case:
The second line contains n, the number of batteries (arr1).

The third line contains arr1, which consists of n space separated integers.
The fourth line contains m, the number of computers (arr2).
The fi�h line contains arr2, which consists of m space separated integers

Output
For each test case return true if we can power on Ziwenʼs Zapper else return false.

Sample Input Parsed Input Sample
Output

Explanation

1
3
3 2 5
2
5 5

ziwensZapper(3, 2, [3, 2, 5],
[5, 5])

true One computer that needs 5
power can be matched with
the 2 and 3 batteries. The
other computer can be
matched with the 5 battery.

1
2
3 4
2
5 3

ziwensZapper(2, 2, [3,
4], [5, 3])

false The computer that needs 3
power can receive the 3
battery, but the computer
that needs 5 power cannot
receive enough power from
the remaining 4 battery.

1
3
6 7 7
3
2 4 5

ziwensZapper(3, 3, [6,
7, 7], [2, 4, 5])

false None of the computers can
be powered by any of the
batteries.

11. DESTROY the Metaverse

Oh no! The AIs have hacked into Ben's Metaverse
he designed for the PClassic heroes to
communicate! The Metaverse world can be
represented by r x c cells and (r + 1) x (c + 1)
coordinates. The world is covered by 4 walls
which go from coordinates (0, 0) to (r, 0), (0, 0) to
(0, c), (r, 0) to (r, c), and (0, c) to (r, c).

The Metaverse has self-constructed n internal
walls, some which are completely horizontal and
others are completely vertical, which may split
the Metaverse into regions. Regions are cells
surrounded by walls on the perimeter but have no

other walls inside. Note that walls can overlap each other.

In addition to the walls, there are k bombs that the AI have planted (bomb coordinates are not
necessarily unique). A bomb at cell (i, j) means it is surrounded by coordinates (i, j), (i+1, j), (i,
j+1), and (i+1, j+1).

If the AI ignites a bomb, all bombs in the same region will go off. Each bomb's power is equal
to the number of cells in the region that it is in and the damage in the Metaverse is equal to
the sum of all ignited bombs' power. The mischievous AI will always ignite one and only one
bomb that causes the most damage in the Metaverse.

Ben has enough resources to construct one more horizontal wall anywhere of any size in the
Metaverse before the AI chooses a bomb to ignite. He needs to try to minimize the amount of
damage the AI will cause. Can you help Ben determine the minimum amount of damage that
will occur in the Metaverse?

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

minimizeDamage(r, c, n, k, walls, bombs):
- r: rows of grid
- c: columns of grid
- n: number of walls (note: you can assume there are walls surrounding the entire region. This

will not be explicitly given)
- k: number of bombs
- walls[n][4]: 2D array, each row containing the coordinates of 1 wall
- bombs[k][2]: 2D array, each row containing the coordinates of 1 object

Your function should return an int if using python, a long in java, or a long long in C++.

Constraints
1 ≤ 𝑟, 𝑐 ≤ 3 * 106

1 ≤ 𝑛 ≤ 1000
1 ≤ 𝑘 ≤ 100000

Input
The first line contains two space-separated integers r and c (1<= r,c <= 3*106)$.

The second line contains two space-separated integers n and k (1 <= n <= 1000, 1 <= k <= 105).

The next n lines contain four integers rs, cs, re, ce (0<= r_s,r_e <= r and 0 <= cs, ce <= c), the coordinates
for one wall with start s and end e.

The next k lines contain two integers rb, cb (0 <= rb< r and 0<= cb < c)$, the coordinates for one bomb.

Output
Print a single integer - the minimum damage in the Metaverse a�er building an extra wall.

Sample Input Parsed Input Sample
Output

Explanation

7
7
4
5
1 1 4 1
1 1 1 3
1 3 4 3
4 1 4 3
2 2
3 2
2 5
2 6
3 6

metaverse(7, 7, 4, 5,
[[1, 1, 4, 1], [1, 1,
1, 3], [1, 3, 4, 3],
[4, 1, 4, 3]], [[2,
2], [3, 2], [2, 5],
[2, 6], [3, 6]])

34

An illustration of the sample
test case. It is best to place a
horizontal wall from (3,0) to
(3,7) to reduce the maximum
damage to 34.

12. Sheltering Survivors

Expert industrial engineer, Brian, wants to create
shelters for the survivors of the AI apocalypse. He
wants to make sure each shelter has electricity. Brian
has found n locations for shelters and m locations for
power plants. Brian has extension cords that are 10
miles long. This means that a power plant can only
power a shelter that is at most 10 miles away.

Brian wants to make sure that power plants do not
get overworked, so each power plant can power at
most p shelters. Additionally, shelters need at least q
power plants to power it and can have at most o

power plants powering them. If a power plant powers a shelter we consider the two to be a
pair. Brian wants to find an assignment of power plants to shelters that maximizes the
number of pairs.

Help Brian figure out how many pairs exist in this maximized arrangement. Note that if there
does not exist a valid assignment such that each shelter gets at least q power plants then we
say there are 0 pairs in the maximized arrangement.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

findMaxPairings(m, n, shelterLocations, powerplantLocations, p, q, o):
- m : number of powerplants
- n : number of shelters
- powerplantLocations: array of locations for powerplants. Follows same format as

shelterLocations.
- shelterLocations: array of locations for shelters. shelterLocations[0][0] is x coordinate of shelter 0

and shelterLocations[0][1] is the y coordinate of shelter 0.
- p: max number of shelters that a powerplant can be paired with
- q: min number of powerplants that a shelter can be paired with
- o: max number of powerplants that a shelter can be paired with

Your function should return an integer representing the max number of pairings

Constraints
1 ≤ 𝑛 ≤ 100
1 ≤ 𝑚 ≤ 100
1 ≤ 𝑝 ≤ 100
1 ≤ 𝑞 ≤ 𝑜 ≤ 100

Input
The first line contains a single integer t (1 <= t <= 10), denoting the number of test cases.

For each test case, the first line contains a single integer m (1 <= m <= 100), the number of power
plants.

The second line contains a single integer n (1 <= n <= 100), the number of shelters.

The next m lines contain two integers, pxj, pyj (-105 <= pxj, pyj <= 105), the coordinates (pxj, pyj) in miles
of power plant j.

The next n lines contain two integers, sxi, syi (-105 <= sxi, syi <= 105), the coordinates (sxi, syi) in miles of
shelter i.

The next line contains a single integer p (1 <= p <= 100), the maximum number of shelters that a power
plant can be paired with.

The next line contains a single integer q (1 <= q <= 100), the minimum number of power plants that a
shelter can be paired with.

The next line contains a single integer o (q <= o <= 100), the maximum number of power plants that a
shelter can be paired with.

We guarantee that the sum over all n does not exceed 100 and the sum over all m does not exceed 100.

Output
For each test case, print a single integer - the maximum number of shelter and power plant pairings.

Sample Input Parsed Input Sample
Output

Explanation

1
4
3
0 6
6 6
0 -6
0 -12
-6 6
0 0
0 7
2
1
2

findMaxPairing(4, 3,
[[0, 6], [6, 6], [0,
-6], [0, -12]], [[-6,
6], [0 , 0], [0, 7]],
2, 1, 2)

5 One possible max pairing is:
Powerplant 0 paired to
Shelters 0, 2
Powerplant 1 paired to
Shelters 1, 2
Powerplant 2 paired to
shelters 1
powerplant 3 paired to
nothing

1
4
5
-6 -6
-6 6
6 6
6 -6
0 0
0 6
6 0
-6 0
0 -6
3
2
3

findMaxPairing(4, 5,
[[-6, -6], [-6, 6],
[6, 6], [6, -6]], [[0,
0], [0 , 6], [6, 0],
[-6, 0], [0, -6]], 3,
2, 3)

11 One possible max pairing is:
powerplant 0 paired to
shelter 0, 3, 4
powerplant 1 paired to
shelter 0, 1, 3
powerplant 2 paired to
shelter 0, 1, 2
powerplant 3 paired to
shelter 2, 4
Note that powerplant 3 canʼt
be paired with shelter 0
because shelter 0 is already
paired to 3 powerplants

