
Contest Problems
Philadelphia Classic, Spring 2022

University of Pennsylvania

Rules and Information

This document includes 12 problems. Novice teams do problems 1-8; standard teams do problems
5-12.

Any team which submits a correct solution for any of problems 1-4 will be assumed to be a novice
team. If you are not a novice team, please skip problems 1-4.

Problems 1-4 are easier than problems 5-8, which are easier than problems 9-12. These problems are
correspondingly labeled “Novice”, “Intermediate”, and “Advanced.” Order does not otherwise relate to
difficulty.

You may use the Internet only for submitting your solutions, reading Javadocs or Python
documentation, and referring to any documents we link you to. You may not use the Internet for
things like StackOverflow, Google, or outside communication.

As you may know, you can choose to solve any given problem in Java, Python, or C++. We have
provided stub files for all questions in all languages that take care of the input parsing for you. Do not
modify any of the parsing or output code. Just fill out the stub methods in each file and submit it
with exactly the same name.

Do not modify any of the given methods or method headers in our stub files! They are all specified in
the desired format. You may add class fields, helper methods, etc as you like, but modifying given
parts will cause your code to fail in our testers.

There is no penalty for incorrect submissions. You will receive 1 point per problem solved. A team’s
number of incorrect submissions will be used only as a tiebreaker.

Some problems use Java’s “long” type; if you are unfamiliar with them, they’re like an “int”, but with a
(much) bigger upper bound, and you have to add “L” to the end of an explicit value assignment:

long myLong = 1000000000000L;
Otherwise, the “long” type functions just like the “int” type.

1

1. An Angry K-Pop Producer
KpopProducer.py, KpopProducer.java, KpopProducer.cpp

A K-Pop producer Ishaan is extremely angry with his
lazy backstage dancers while filming the next
BlackRed music video! To punish them, he gives them
each a letter to hold (which come together to form a
string) and then yells out a series of positive integers.
For each integer, the dancers must shift right by that
amount, but must “wrap” around the right end so that
their position in line has changed. (ex. With each call,
some rightmost dancers will have moved to the
leftmost side.) Can you write a program that
determines the final string after he finally loses his
voice?x

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

danceCommand(s, arr)
● s: a string that represents the initial string
● arr: an array of positive integers that represent the “right shifts” of the string

Your function should return a string.

Constraints
1 ≤ |𝑠𝑡𝑟𝑖𝑛𝑔| ≤ 10000
1 ≤ |𝑎𝑟𝑟| ≤ 10000

where x is an element of arr.0 ≤ 𝑥 ≤ 100000

Input
The first line represents the number of test cases T.
For each test case:
The first line contains s.
The second line contains n, the length of the array.
The third line contains arr which consists of n integer values, each denoted as x.

2

Output
For each test case, print a string representing the shifted string.

Sample Input Parsed Input Sample
Output

Explanation

1
kpop
1
2

danceCommand(“kpop”,
[2])

opkp The first two letters are
shifted by 2 right, and the
last two rightmost letters are
wrapped to the left.

1
blackred
1
3

danceCommand(“blackred
”, [3])

redblack The first 5 letters are shifted
by 3 right, and the 3
rightmost letters are
wrapped to the left.

1
capital
4
1 3 7 1

danceCommand(“capital”
, [1, 3, 7, 1])

pitalca After each of the 4 shifts, the
string should be:
lcapita
italcap
italcap
pitalca

3

2. Royal Translator
RoyalTranslator.py, RoyalTranslator.java, RoyalTranslator.cpp

As Queen Elizabeth II’s newly recruited translator,
Michelle IV is excited to begin her job at Buckingham
Palace! But having just arrived from South Korea,
she is extremely jet lagged and needs your help
translating. Queen Elizabeth II has given her a string
of only letters and spaces, forming a sentence of
words (strings), and a “translation guide” mapping
from string to string. Note: There is no punctuation
in the sentence, and there are spaces separating
each string. Help Royal Translator Michelle IV give
Queen Elizabeth II her translated string by writing a
program that changes each word in the old sentence
to its mapped value in the translation guide.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

translate(message, map)
● message: a sentence of strings (made of spaces and characters) to be translated.
● map: a map that represents a translation of each possible string to another string.

Your function should return the translated string.

Constraints
000 ≤ 𝑤𝑜𝑟𝑑𝑠 (𝑠𝑒𝑝𝑎𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑠𝑝𝑎𝑐𝑒𝑠) 𝑖𝑛 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 ≤ 100

00 ≤ 𝑚𝑎𝑝 ≤ 1000

(cont. on next page)

4

2. Royal Translator

Input
The first line represents the number of test cases T.
For each test case:
The first line contains message
The second line contains mappingCount
The next mappingCount lines contain two strings each, separated by a space, representing a
possible string and its translation

Output
For each test case, print a sentence representing the translated message.

Sample Input Parsed Input Sample
Output

Explanation

1
tired of translating
3
tired scared
of to
translating fly

translate(“tired
of translating”,
{{tired: scared},
{of: to},
{translating:
fly}})

scared to
fly

tired → scared
of → to
translating → fly

1
proud red and blue
4
proud gone
red with
and the
blue wind

translate(“proud
red and blue”,
{{proud: gone},
{red: with},
{and: the},
{blue: wind}})

gone with
the wind

proud → gone
red→ with
and -> the
blue -> wind

5

1
and
0

translate(“and”,
{{}})

and and → and

No mapping, so it’s
left alone

6

3. Egyptian Mosaic
EgyptianMosaic.py, EgyptianMosaic.java, EgyptianMosaic.cpp

Ziwen is a triangle fanatic. All of his friends think
he needs professional help but Ziwen refuses.
One day during geography class, he sees a picture
of Egyptian pyramids and immediately falls in
love. The next day he promptly skips class and
hops on a flight to Egypt, claiming that this
spiritual journey will bring him closer to his
beloved shape.

On the way to the pyramids, he sees a shop offering various Egyptian arts and crafts. Intrigued
and hoping to find various triangle shaped trinkets inside, he enters. To Ziwen’s surprise,
there is a mosaic class going on, where an
artist is teaching several people how to make
their own mosaic art on a grid of squares.
Ziwen cringes at the thought of squares and
turns to leave, but the teacher notices him
and beckons him over. She hands him a
mosaic kit with some starter templates.
Ziwen is thrilled to notice a pattern that
seems to be made of many triangles.

<< START READING HERE FOR PROBLEM >>

The teacher shows him how to make the mosaic. The first (top) row of the grid is full of white
tiles, but the center tile has a black tile. To fill in the next row, Ziwen must follow the rules
shown above the template. For each tile he places in the new row, he looks at the three tiles
directly northwest, north, and northeast of the current position and matches it with a rule in
order to determine which color tile to place down in the current position. A tile outside the
area of the mosaic canvas can be treated as a white tile. Ziwen quickly realizes that with this
method, he can fill any grid he wants with this epic pattern! Can you write a program that
helps Ziwen easily visualize what this pattern will look like on a given grid?

7

3. Egyptian Mosaic

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

fillMosaic(gridWidth, gridHeight)
● gridWidth: the number of columns, always an odd number, will be a positive integer

>= 1
● gridHeight: the number of rows, can be odd or even, will be a positive integer >= 1

Your function should return a 2D string array representing the filled out mosaic:
● # - represents a black tile
● . - represents a white tile
● The number of columns will always be an odd number, so the first row should contain

all white tiles except for a black tile in the center.

Constraints
1 ≤ 𝑔𝑟𝑖𝑑𝑊𝑖𝑑𝑡ℎ ≤ 104

1 ≤ 𝑔𝑟𝑖𝑑𝐻𝑒𝑖𝑔ℎ𝑡 ≤ 104

Input
The first line represents the number of test cases T.
For each test case:
The first line contains w and h

Integer w representing the grid width (number of columns)
Integer h representing the grid height (number of rows)

Output
For each test case, return the completed mosaic in 2D string array form.

(cont. on next page)

8

3. Egyptian Mosaic

Sample
Input

Parsed Input Sample Output Printed Output

1
3 3

fillMosaic
(3, 3)

[
[“.”, “#”, “.”],
[“#”, “#”, “#”],
[“#”, “.”, “#”]
]

.#.
###
#.#

1
31 16

fillMosaic
(31, 16)

(see printed
output →)

...............#...............

..............###..............

.............##.##.............

............#######............

...........##.....##...........

..........####...####..........

.........##..##.##..##.........

........###############........

.......##.............##.......

......####...........####......

.....##..##.........##..##.....

....########.......########....

...##......##.....##......##...

..####....####...####....####..

.##..##..##..##.##..##..##..##.
###############################

1
15 8

fillMosaic
(15, 8)

(see printed
output →)

.......#.......

......###......

.....##.##.....

....#######....

...##.....##...

..####...####..

.##..##.##..##.
###############

9

4. Widest Mountain
WidestMountain.py, WidestMountain.java, WidestMountain.cpp

Sasha arrives at her next travel location, Switzerland!
However, all her prior traveling has made her tired (she
hasn’t been going to the gym lately). Since she still has
a lot of traveling to do, she wants to get back into
shape. She has a map of a trail in the Alps, which
includes a list of the elevations at each mile of the trail.
To maximize her gains, she wants to find the longest
segment of the trail that is a “mountain” and run along
it. A mountain is a sequence of elevations that strictly

increases, reaches a peak, then strictly decreases. The peak is taller than any point in the
mountain. Help Sasha determine the longest portion of the trail she can run.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

findWidestMountain(n, mountainRange)
● n: the length of the trail (in miles)
● mountainRange: an array of integers containing the elevations of the trail at each mile

Your function should return an integer representing the length of the widest mountain that
Sasha can run across.

Constraints
1 ≤ 𝑛 ≤ 106

1 ≤ |𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛𝑅𝑎𝑛𝑔𝑒| ≤ 106

(cont. on next page)

10

4. Widest Mountain

Input
The first line represents the number of test cases T.
For each test case:
The first line contains n.
The second line contains mountainRange.

Output
For each test case, output the length of the widest mountain.

Sample Input Parsed Input Sample Output Explanation

1
5
6 3 5 2 7

findWidestMountain
(5, [6, 3, 5, 2,
7])

3 The widest mountain is
[3, 5, 2]

1
4
2 5 7 13

findWidestMountain
(4, [2, 5, 7, 13])

0 There is no mountain in
this trail as it is strictly
increasing and never
decreases. Therefore,
Sasha cannot run on this
trail

1
7
3 8 5 4 1 20 2

findWidestMountain
(7, [3, 8, 5, 4,
1, 5, 2])

5 The widest mountain is
[3, 8, 5, 4, 1]

1
6
2 5 3 7 1 2

findWidestMountain
(6, [2, 5, 3, 7,
1, 2])

3 The widest mountain is
[2, 5, 3] or [3, 7, 1]

11

5. Shifting Sands
ShiftingSands.py, ShiftingSands.java, ShiftingSands.cpp

Brian is feeling adventurous so he flies to
Algeria to observe the Sahara Desert. He
keeps a journal about what he sees and in
that journal he writes that he found a magical
4x4 grid of sand dunes. In this 4x4 grid, gusts
of wind blow in any 4 of the cardinal
directions and the wind is so strong that it
moves the sand dunes. Each sand dune has
an associated size given by an integer. Sand
dunes can have size 0.

Brian also writes that the sand dunes are moved by the wind according to the following rules:
● Sand dunes cannot move outside of the 4x4 grid
● Sand dunes will blow as far in the direction of the wind as possible.
● When two sand dunes collide from a gust of wind, they can combine into one sand

dune if they have the same size. They will combine into a sand dune that has double
the size.

● Dunes can only combine once per gust of wind.
● When 3 dunes of the same size collide into each other the two that are further in the

direction of the wind will combine. For example, if the wind is blowing to the west the
two most western dunes will combine.

(cont. on next page)

12

5. Shifting Sands

Brian also leaves some drawings of the sand dunes moving:

In his journal, Brian also records the original state that the dunes are in and a list of the
directions that wind blows (ex: N, W, W, S, E, N). Can you design an algorithm to find the final
state of the sand dunes given the original state and the directions that the wind blows?

(cont. on next page)

13

5. Shifting Sands

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

shiftingSands(dunes, winds)
● dunes: 2D array of integers representing the height of all of the dunes. dunes

represent the original height of all of the dunes.
● winds: an array of Strings representing the directions the wind blows in

Your function should return a 2D array representing the height of the dunes after the wind has
blown.

Constraints
𝑑𝑢𝑛𝑒𝑠 = 4𝑥4

0 ≤ 𝑤𝑖𝑛𝑑𝑠 ≤ 104

(cont. on next page)

14

5. Shifting Sands

Input
The first line represents the number of test cases T.
For each test case:
The first 4 lines are 4 integers representing the heights of the dunes, dunes
The 5th line is a sequence of letters representing the directions the wind blows in, separated
by spaces, winds

Output
For each test case, output the heights of the dunes.

Sample Input Parsed Input Sample Output

1
0 0 1 1
0 1 0 1
0 1 1 1
1 1 1 1
E

shiftingSands([
[0,0,1,1],
[0,1,0,1],
[0,1,1,1],
[1,1,1,1]
],
[“E”])

0 0 0 2
0 0 0 2
0 0 1 2
0 0 2 2

1
0 1 2 1
0 2 1 1
1 2 2 1
1 0 4 0
E

shiftingSands([
[0,1,2,1],
[0,2,1,1],
[1,2,2,1],
[1,0,4,0]
],
[“E”])

0 1 2 1
0 0 2 2
0 1 4 1
0 0 1 4

1
0 1 1 2
0 0 2 1
0 2 1 1
4 4 2 1
E W N S

shiftingSands([
[0,1,1,2],
[0,0,2,1],
[0,2,1,1],
[4,4,2,1]
],
[“E”, “W”, “N”, “S”])

4 0 0 0
2 0 0 0
4 1 0 0
8 2 1 0

15

6. Lantern Festival
LanternFestival.py, LanternFestival.java, LanternFestival.cpp

Lantern festivals are a tradition in China.
Instead of letting them go Tangled-style,
Andrew wants to hang lanterns on his
house. He has n distinct integer labeled
lanterns from 0 to n-1. His house only has
room to attach exactly one lantern, but he
can hang lanterns under other lanterns. To
do so, a lantern can have a horizontal stick
attached beneath it with exactly one lantern
attached to each side of the stick. The left
lantern must be of smaller value than the

right one. A lantern can be attached to at most 1 stick.

Andrew is a little picky and has a list of lanterns he wants attached directly under certain
lanterns. Given his preferences, can you find if there is a valid way to hang all n lanterns? If so,
return the order of lanterns from top to bottom, left to right.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

lanternFestival(n, prefs)
● n: an integer that represents the total number of lanterns
● prefs: a 2D array that represent preferences of lanterns

○ The first element contains the top lantern
○ The second element contains the bottom lantern

Your function should return a list that represents the lantern formation or a list containing -1
otherwise.

Constraints
0 < 𝑛 ≤ 1000
0 < |𝑝𝑟𝑒𝑓𝑠| ≤ 1000

Input
The first line represents the number of test cases T.

16

For each of the T cases:
The first line represents n.
The second line represents the number of preferences.
The next |prefs| lines contain two integers separated by a space, where the first element is the
top lantern and the second element is the bottom lantern.

Output
For each test case, output the order of the lanterns from top to bottom, left to right, where
each lantern is on a new line, or -1 if an arrangement is not possible.
(cont. on next page)

17

6. Lantern Festival

Sample Input Parsed Input Sample Output Explanation

1
5
4
0 1
0 2
1 4
1 3

lanternFestival(5,
[[0, 1], [0, 2],
[1, 4], [1, 3]])

0
1
2
3
4

0
|

——
| |
1 2

——
| |
3 4
This is a valid
formation because
exactly 1 lantern is
attached to the root
(0) and the other
lanterns obey
Andrew’s
preferences.

1
2
1
0 1

lanternFestival(2,
[0, 1])

-1 0
|

——
| |
1

This is not valid
because there needs
to be two lanterns
attached to the stick
below 0

1
2
2
0 1
1 0

lanternFestival(2,
[0, 1], [1, 0])

-1 0
|

——
| |
1

——
| |
0

This isn’t physically
possible because 0 is

18

both above and
below 1.

1
6
6
0 1
0 2
1 4
1 3
2 5
2 4

lanternFestival(6,
[0, 1], [0, 2],
[1, 4], [1, 3],
[2, 5], [2, 4]}

-1 0
|

————
| |
1 2

—— ——
| | | |
3 4 4 5

4 is attached to both
1 and 2, which is not
allowed.

19

7. Italy Itinerary
ItalyItinerary.py, ItalyItinerary.java, ItalyItinerary.cpp

Tien suddenly awakes, his back against a sandy
shore, and immediately squints against the
bright afternoon sun. Gentle, warm waves are
lapping at his sides. An annoying seagull is
pecking near his toes relentlessly, but quickly
flies off when he waves his foot at it. He can
vaguely hear some tourists chattering and
playing in the water a few meters away.

Just when Tien decides he never wants to move
from this wonderful paradise of a spot, a

shadow looms over him and blocks the sun. He opens his eyes with great reluctance to see someone
standing over him. “Ciao!” the strange man says with a warm smile. “Welcome to Italy!” Before Tien
can wonder how the man even knows he’s a tourist, the stranger hands Tien a piece of paper. “Feel
free to use this itinerary while you are here. Addio!” The man walks away with no further explanation.

<< START READING HERE FOR PROBLEM >>

Tien decides he has seen weirder things, shrugs and starts to read the itinerary. It appears to be a list
of events to do around Italy, listed in an order such that the travel time would be most time and money
efficient if one did the events in the given order.
Tien wants to follow the itinerary and do as many
fun events as he can, but doesn’t know if he will
have the energy for everything. He takes out a pen
and marks next to each event two numbers, one
estimating its fun value and one estimating its
recovery requirement. The fun value dictates how
much enjoyment Tien will get out of attending an
event, and the recovery requirement dictates how
many consecutive events Tien will have to skip
right after attending said event in order to recover
his energy (he’s getting old after all).

Of course, even when Tien is on vacation, algorithms never leave his mind, so he immediately wonders
if there is a way to write a program to automatically calculate which events he should go to and which
ones he will skip. If he chooses to attend an event, he will receive the total fun value but also have to
skip the next x events where x is the recovery requirement value. He also has enough money left from
his last TA paycheck to splurge on ONE event specifically, so he can double the fun value for any ONE

20

7. Italy Itinerary
chosen event that he wants to attend (the recovery requirement stays the same). The program should
return the maximum collective fun value Tien can obtain from a given itinerary.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

maximizeFun(itinerary)
● itinerary: a 2D integer array where itinerary[i] = [funValuei,

energyRequirementi]. Each row represents an event, and the events are already
ordered as on the itinerary.

Your function should return the MAXIMUM overall fun value this itinerary can provide given
your fun and energy preferences/requirements.

Constraints
1 ≤ |𝑖𝑡𝑖𝑛𝑒𝑟𝑎𝑟𝑦| ≤ 600, 000
1 ≤ |𝑓𝑢𝑛𝑉𝑎𝑙𝑢𝑒

𝑖
, 𝑒𝑛𝑒𝑟𝑔𝑦𝑅𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡

𝑖
| ≤ 600, 000

Input
The first line represents the number of test cases, T.
For each following test case:
The first line contains n, or number of events.
The next n lines contain two ints each, representing the fun value and energy requirement.

Output
For each test case, output the MAXIMUM overall fun value this itinerary can provide.

(cont. on next page)

21

Sample Input Parsed Input Sample Output Explanation

1
3
1 2
2 1
3 1

maximizeFun([
[1, 2],
[2, 1],
[3, 1]
])

6 In this scenario, you are only
able to do 1 event. Thus, you
should do the last event. You
can double the fun value which
will yield 3*2=6.

1
4
3 2
5 3
4 4
4 5

maximizeFun([
[3, 2],
[5, 3],
[4, 4],
[4, 5]
])

11 If you do the 1st event, you get
3 fun points, then you have to
skip the next two events but
you can do the 4th event and
choose to double its fun to get
8 more fun points, yielding a
total of 11.

Skipping the 1st event only
leaves the option of doing
either the 2nd, 3rd, or 4th
event individually since your
energy won’t recover to allow
another event, so the
maximum you can get (by
doubling) on each is 10, 8, or 8
respectively, which are all less
than 11.

22

8. VanuaTube Adventures
VanuaTubeAdventures.py, VanuaTubeAdventures.java,

VanuaTubeAdventures.cpp

Meggie and Vatsin are enjoying their
summer in the beautiful country of
Vanuatu. Vanuatu is composed of
m*n islands, but a sudden
earthquake caused the islands to
shift their positions such that they
miraculously ended up in an m x n
grid of islands! The island that
Meggie and Vatsin were chilling at
somehow ended up in the bottom
left hand corner of the grid. The
earthquake also made the bellies of

Meggie and Vatsin quake, so they need to get some food for themselves quickly! The only
place to get food in the country is located at the island at the top right corner of the grid of
islands. The islands are connected by tubes such that each island is connected to the island
above, below, to the left, and to the right of it (if such an island exists). Vatsin and Meggie are
only allowed to go to the island directly north of them or directly east of them.

Furthermore, some of the islands have tickets which they can trade in for a meal at the top
right island. If Vatsin and Meggie encounter a ticket along their path, they must collect it.
Because Vatsin and Meggie want to both eat the same amount of meals, they want to collect
an even number of tickets along the way.

As the concierge at Vanuatu island, you want to guarantee that no matter what path Vatsin
and Meggie take, they end up with an even number of tickets. Moreover, you know that there
are q plans where the ith plan involves adding di tickets to islands such that each island can
have at most one ticket. For each of the q plans, determine whether it is possible to place the
di additional tickets such that no matter what path they take from the bottom left to the top
right, Vatsin and Meggie will collect an even number of tickets.

23

8. VanuaTube Adventures

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

tubeAdventures(n, m, q, islands, queries)
● n:number of rows of islands
● m: number of columns of islands
● q: number of queries
● islands: an array of strings where each string represents a row of islands and a character is a “.”

if there is no ticket and an “x” if there is a ticket.
● queries an array of integers where each element represents the number of tickets to place

Your function should return a list containing YES if it is possible to place the additional tickets,
and NO if it is not possible for each query.

Constraints
0 ≤ 𝑚 × 𝑛 ≤ 5 × 104

1 ≤ 𝑞 ≤ 105

Input
The first line contains n m q
The next n lines contain a string representing a row of islands
The next q lines contain an int representing the number of tickets we want to place

Output
Output YES if there exists a valid ticket placement, and NO otherwise per query.

(cont. on next page)

24

8. VanuaTube Adventures

Sample Input Parsed Input Sample
Output

Explanation

1
2 3 3
...
...
1
2
3

tubeAdventures(2,
3, 3,
[“...”, “...”],
[1,2,3])

NO
YES
YES

There’s no way to place only
one ticket so that Vatsin is
always in front of Meggie.

For two tickets we could place
them as follows:
..x
x..

For three tickets:
.x.
x.x

1
3 3 5
...
..x
..x
1
2
3
4
5

tubeAdventures(3,
3, 5,
[“...”,
“..x”,
“..x”],
[1,2,3,4,5])

NO
NO
YES
NO
YES

There’s no way to place only
one, two, or four tickets so that
Vatsin is always in front of
Meggie.

For three tickets we could
place them as follows:
xx.
.xx
..x

For five tickets:
xxx
.xx
x.x

1
3 6 3
.x....
.x.x.x
.....x
8
9
10

tubeAdventures(3,
6, 3,
[“.x....”,
“.x.x.x”,
“.....x”],
[8,9,10])

NO
NO
YES

There’s no way to place only
eight or nine tickets so that
Vatsin is always in front of
Meggie.

For ten tickets we could place
them as follows:
xxxxx.
.xxxxx
x.xxxx

25

9. Biblioburro
Biblioburro.py, Biblioburro.java, Biblioburro.cpp

Grace and Ani are librarians backpacking
in Colombia. They love the nature around
them but are deeply booksick, as it has
been over 24 hrs since they have been
within vicinity of any form of physical
literature. When they come across a man
with two donkeys, they are thrilled and
intrigued to see that strapped to the
donkeys’ backs are shelves of books! They
introduce themselves and learn that the

man’s name is Luis Sorano. Luis has spent the last ~30 years traveling around rural Colombia
with his two “biblioburros” (a mix of the words biblioteca and burro, which are library and
donkey in Spanish respectively), providing library access to kids in hard-to-reach,
mountainous areas. He laments that even though he loves his job, his donkeys are getting old
and he wants to only travel efficiently through the mountains for their sake.

Grace and Ani have had prior programming experience and are eager to help. Luis gives them
an ordered list of mountain heights of the mountains that he travels on. When making a trip
he will pick a subset of mountains to visit and he will visit them in the increasing order of their
positions on the list. A list is considered “efficient” if for ALL POSSIBLE TRIPS he takes through
the mountains the absolute difference between consecutive mountains is strictly decreasing
as he travels in order from the first mountain to the last mountain. The program should return
a boolean True if a list is efficient, and False otherwise.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

efficientTrip(mountainList)
● mountainList: an array of integers that represents the height of mountains, in Luis’s

preferred traveling order

Your program should return a boolean True if a list is efficient, and False otherwise.

Constraints
1 ≤ 𝑡𝑒𝑠𝑡𝑐𝑎𝑠𝑒𝑠 ≤ 105

1 ≤ |𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛𝐿𝑖𝑠𝑡| ≤ 100

26

9. Biblioburro
1 ≤ 𝑚𝑜𝑢𝑛𝑡𝑎𝑖𝑛𝐻𝑒𝑖𝑔ℎ𝑡 ≤ 1018

Input
The first line represents the number of test cases T.
For each test case:
The first line contains the number of mountains
The second line contains the list of mountain heights, separated by spaces

Output
Output 1 if a list is efficient and 0 if it isn’t

Sample Input Parsed Input Sample Output Explanation

1
5
1 8 4 6 5

efficientTrip(5,
[1, 8, 4, 6, 5])

1 If he chooses just a single
mountain or two mountains
to travel to, then it is
obviously efficient. It can be
checked that if any 3 or 4
mountains are chosen the
gaps are decreasing. For
example, if he chooses the
1st, 2nd, and 4th mountains
(i.e. the subarray [1, 8, 6]), the
first gap is |1 - 8| = 7 and the
second gap is |8 - 6| = 2, so
the gaps are decreasing.

1
3
5 8 6

efficientTrip(
[5, 8, 6])

1 Note that |5 - 8| = 3 and |8 - 6|
2, so the gaps are decreasing.

1
4
1 2 5 6

efficientTrip(
[1, 2, 5, 6])

0 If we chose the 1st, 2nd, and
3rd mountains, the gaps are
|1 - 2| = 1 and |2 - 5| = 3, so the
gaps between consecutive
mountains are not strictly
decreasing.

27

10. Ethan Chee Superhero
Superhero.py, Superhero.java, Superhero.cpp

PClassic’s resident superhero
Ethan Chee is busy at work
helping ordinary civilians.
Today, he has traveled to
Universal Studios Singapore to
help n children be brave thrill
seekers for the day.

The n children are in line for a
roller coaster with a circular
ride vehicle. Passengers sit
around the circumference of
the circular vehicle. Because
Universal Studios is so rich,
they have managed to engineer

a ride vehicle which can fit an unlimited number of passengers.

However, the children are too scared to ride without their best friend. The children are
numbered from 0 to n - 1. Each child has a best friend and will ride only if they can sit next to
their best friend. You may assume that no child is their own best friend.

Given a 0-indexed integer array bff, where bff[i] denotes the ith child’s best friend, help
Superhero Ethan Chee determine the maximum number of children he can help face their
fears on the roller coaster.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

superhero(n, bff):
● n: an integer that represents the total number of children.
● bff: A 0-indexed array where bff[i] denotes the ith child’s best friend

Your function should return an integer denoting the maximum number of children Ethan Chee
can get to ride the roller coaster.

28

Constraints
2 ≤ 𝑛 ≤ 104
|𝑏𝑓𝑓| = 𝑛

Input
The first line represents the number of test cases T.
For each test case:
The first line contains n which represents the total number of children.
The next n lines each contain one integer, representing the current child’s best friend.

Output
Output an integer representing the maximum number of children who can ride the roller coaster.

Sample Input Parsed Input Sample Output Explanation

1
3
1
2
0

superhero(3, [1, 2,
0])

3 The children can sit
in the following
circle: 0-1-2 and
their preferences
will be satisfied.

1
6
1
2
0
0
0
0

superhero(3, [1, 2,
0, 0, 0, 0])

3 4 people want to sit
next to child 0, but
unfortunately the
ride cannot take all
of them. Children 0,
1 and 2 can form a
circle which is the
maximum number
for this scenario.

29

11. Christian’s Tropical Vacation
vacation.py, vacation.java, vacation.cpp

To escape his responsibilities, Christian has
decided to travel to the Amazon Rainforest.
Being an avid botanist, he decides that the
beauty of a tree rooted at t (represented as t!) is
given by:

Where t is the root of the tree, |s| is the number
of leaves in t and ti! is the beauty of the ith
subtree. The beauty of a single vertex is 1.

While exploring the Amazon, Christian stumbles
upon a magical device that allows him to combine trees. Given complete trees t and g, the
device creates the tree h = t * g such that h is the tree where each leaf in t is replaced by g. (We
define a single vertex to be a leaf)

Furthermore, Christian notices that his surroundings is composed of n complete trees where the
ith tree ti of height hi is defined by an array [a1, a2, …, ahi] such that a1 = 1 and each vertex in the
jth level of the tree (1 ≤ j < hi) has exactly aj+1 children. The root of the tree has level 1. Given q
queries (l, r), help Christian find the beauty of the tree created by tl * (tl+1 * (tl+2 * … (... * tr))) mod
1e9 + 7.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

vacation(n, q, trees, queries):
● n: the number of trees
● q: the number of queries
● trees: a 2d array describing the trees. The ith array contains the height of the ith tree,

followed by the number of children for each vertex in each level.
● queries: an array describing the q queries. The ith query contains [li, ri].

Your function should return an integer denoting the beauty of the resulting tree formed by tl * (tl+1

* (tl+2 * … (... * tr))) mod 109 + 7

30

Constraints
1 ≤ 𝑛, 𝑞 ≤ 100000

,1 ≤ ℎ
𝑖

≤ 200000 1 ≤ 𝑎
𝑗

≤ 109

1 ≤ 𝑙
𝑖

≤ 𝑟
𝑖

≤ 𝑛

We guarantee that the sum over all hi does not exceed 2 × 105

Input
The first line represents the number of trees n and the number of queries q.

The next n lines represent the trees where the ith line contains the height of the tree hi followed a1, a2,
…, ahi.

The next q lines represent the queries where the ith line contains the query (li, ri)

Output
For each of the q queries, output the beauty of the resulting tree formed by tl * (tl+1 * (tl+2 * … (... * tr)))

mod 109 + 7

Sample Input Parsed Input Sample Output Explanation

3 2
1 1
3 1 6 3
2 1 4
1 1
1 3

vacation(3, 2
[[1, 1], [3, 1,
6, 3], [2, 1,
4]], [[1, 1],
[1, 3]])

1
170502810

The first query just results in
a single vertex of beauty 1.

The second query results in a
complete tree of height 4
where the root has 6
children, each vertex in the
second level has 3 children,
and each vertex in the third
level has 4 children. The
resulting value of the beauty
is 6 * 3 * 4 * ((12 *4^3)^6)
mod (10^9 + 7) = 170502810

6 4
2 1 3
1 1

vacation(6, 4
[[2, 1, 3], [1,
1], [6, 1, 7,

3
86135074
463522752

The first query results in a
complete tree of height 2
where the root has 3

31

6 1 7 5 3 2 2
5 1 6 1 9 3
3 1 2 2
3 1 1 1
1 2
2 6
1 5
3 4

5, 3, 2, 2],
[5, 1, 9, 1, 9,
3], [3, 1, 2,
2], [3, 1, 1,
1]], [[1, 2],
[2, 6], [1, 5],
[3, 4]])

818120065 children. The beauty of the
tree is 3 * (1^3) = 3.

The next 3 queries are left as
an exercise.

32

12. Aaron’s Terrifying Tetrahedron
terrifyingTetra.py, terrifyingTetra.java, terrifyingTetra.cpp

Aaron is not like most people. While venturing in
France, he decides to avoid the typical
attractions such as the Eiffel Tower, but rather
spends his time exploring classrooms of dead
French Mathematicians.

One day, he enters the classroom of Professor
Gonem Sardgap. On the blackboard of the
classroom is a geometric sketch which Aaron
wants to learn more about.

The blackboard depicts a tetrahedron
(not-necessarily regular) with six planes slicing

through it. The planes are such that each plane passes through the midpoint of a distinct edge
of the tetrahedron, but is also perpendicular to the opposite edge.

For example, if the tetrahedron is labeled ABCD, there is one plane passing through the
midpoint of edge AB which is also perpendicular to the edge CD. Aaron sees that Professor
Sardgap has written a theorem on the board that says that all these planes will coincide at
one point.

Interested in this theorem, Aaron wants your help to write a program that will find the point of
concurrence of these six planes given the four coordinates of the vertices of the tetrahedron.
You may assume the following:

● No three vertices are collinear.
● The four vertices are not coplanar.
● All four vertices are distinct.

Implementation Details
Implement the following function. It will be called by the grader once for each test case.

terrifyingTetra(pts)
● pts: a list of lists of the form [x, y, z], where each list corresponds to one vertex, and

the first element of the list is the x coordinate, the second is the y-coordinate, and the
third is the z-coordinate. We also have |pts| = 4.

33

Your function should return the x-, y-, and z-coordinate of the point of concurrence, rounded
to the nearest tenth.

Constraints
− 100 ≤ 𝑥, 𝑦, 𝑧 ≤ 100
 |𝑝𝑡𝑠| = 4

Input
The first line represents the number of test cases T.
Each test case consists of four lines:
The ith line contains three decimals x y z corresponding to the coordinates of the ith vertex

Output
For each test case, print three decimals rounded to the nearest tenth representing the point of
concurrence of the planes.

Sample Input Parsed Input Sample Output Explanation

1
1 1 1
-1 1 1
1 -1 1
1 1 -1

terrifyingTetra([[1
, 1, 1], [-1, 1,
1], [1, -1, 1], [1,
1, -1]])

1.0 1.0 1.0 The planes coincide at
the point (1.0, 1.0, 1.0)

1
1 0 -0.707416
-1 0 -0.707416
0 1 0.707416
0 1 -0.707416

terrifyingTetra([[1
, 0, -0.707416],
[-1, 0, -0.707416],
[0, 1, 0.707416],
[0, 1, -0.707416]])

0.0 1.0 -0.7 The planes coincide at
the point (0.0, 1.0,
-0.7)

1
1 1 1
-1 0 1
1 -1 1
1 0 -1

terrifyingTetra([[1
, 1, 1], [-1, 0,
1], [1, -1, 1], [1,
0, -1]])

0.8 0.0 0.8 The planes coincide at
the point (0.8, 0, 0.8)

34

